ANALISIS DINAMIKA PENYEBARAN COVID-19 DENGAN LAJU INSIDEN NONLINEAR

Nurul Qorima Putri, P. Sianturi
{"title":"ANALISIS DINAMIKA PENYEBARAN COVID-19 DENGAN LAJU INSIDEN NONLINEAR","authors":"Nurul Qorima Putri, P. Sianturi","doi":"10.30743/MES.V6I2.3358","DOIUrl":null,"url":null,"abstract":"This research is focused on discussing the SEIQRS epidemic model for the spread of the COVID-19 disease with a nonlinear incidence rate. From the result of analysis of the SEIQR model obtained two equilibrium point these are diseases free equilibrium points and endemic equilibrium point. Then, the analysis of the completion behavior is done by using eigenvalues and stability around equilibrium point, the obtained result of the diseases free equilibrium point has two stability traits are saddle point, and stable. The stability diseases free equilibrium will be stable when  R0  1, if R0 1 then the equilibrium point is not stable (saddle point) and conversely the positive endemic equilibrium point will be spiral stable. In numerical analysis, it is done by varying the parameter values and using the fourth order runge-kutta approach.","PeriodicalId":303412,"journal":{"name":"MES: Journal of Mathematics Education and Science","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MES: Journal of Mathematics Education and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30743/MES.V6I2.3358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research is focused on discussing the SEIQRS epidemic model for the spread of the COVID-19 disease with a nonlinear incidence rate. From the result of analysis of the SEIQR model obtained two equilibrium point these are diseases free equilibrium points and endemic equilibrium point. Then, the analysis of the completion behavior is done by using eigenvalues and stability around equilibrium point, the obtained result of the diseases free equilibrium point has two stability traits are saddle point, and stable. The stability diseases free equilibrium will be stable when  R0  1, if R0 1 then the equilibrium point is not stable (saddle point) and conversely the positive endemic equilibrium point will be spiral stable. In numerical analysis, it is done by varying the parameter values and using the fourth order runge-kutta approach.
本研究重点讨论了具有非线性发病率的新型冠状病毒病的SEIQRS流行模型。从SEIQR模型的分析结果得到了两个平衡点,即无病平衡点和地方病平衡点。然后,利用特征值和平衡点周围的稳定性对系统的完井行为进行了分析,得到无病平衡点具有鞍点和稳定两种稳定性特征。当R0为1时,稳定无病平衡点稳定,当R0为1时,平衡点不稳定(鞍点),反之,正地方病平衡点为螺旋稳定。在数值分析中,通过改变参数值和使用四阶龙格-库塔方法来完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信