{"title":"Fabrication and RF performance of InAs nanowire FET","authors":"W. Prost, F. Tegude","doi":"10.1109/DRC.2010.5551958","DOIUrl":null,"url":null,"abstract":"Nanowires can excellently be controlled during synthesis with respect to physical and chemical characteristics, including composition, size, electronic and optical properties. They may be used both as devices and interconnects, and thus can open doors for downscaled integration concepts not seen before. The non-lithographic bottom up synthesis approach on the nanoscale may be extremely costeffective, especially when making use of the large material diversity stemming from decoupling of device from substrate material without loss of structural quality, e.g. growing metallic, Ge or III–V nanowires on Si substrates. Going down to very small dimensions one may make use of quantum confinement effects like reduced phonon scattering and related high carrier mobility, tunable electrical and optical properties, or implementing heterostructures for quantum dot and single electron devices.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nanowires can excellently be controlled during synthesis with respect to physical and chemical characteristics, including composition, size, electronic and optical properties. They may be used both as devices and interconnects, and thus can open doors for downscaled integration concepts not seen before. The non-lithographic bottom up synthesis approach on the nanoscale may be extremely costeffective, especially when making use of the large material diversity stemming from decoupling of device from substrate material without loss of structural quality, e.g. growing metallic, Ge or III–V nanowires on Si substrates. Going down to very small dimensions one may make use of quantum confinement effects like reduced phonon scattering and related high carrier mobility, tunable electrical and optical properties, or implementing heterostructures for quantum dot and single electron devices.