{"title":"Multimodal imitation using self-learned sensorimotor representations","authors":"Martina Zambelli, Y. Demiris","doi":"10.1109/IROS.2016.7759582","DOIUrl":null,"url":null,"abstract":"Although many tasks intrinsically involve multiple modalities, often only data from a single modality are used to improve complex robots acquisition of new skills. We present a method to equip robots with multimodal learning skills to achieve multimodal imitation on-the-fly on multiple concurrent task spaces, including vision, touch and proprioception, only using self-learned multimodal sensorimotor relations, without the need of solving inverse kinematic problems or explicit analytical models formulation. We evaluate the proposed method on a humanoid iCub robot learning to interact with a piano keyboard and imitating a human demonstration. Since no assumptions are made on the kinematic structure of the robot, the method can be also applied to different robotic platforms.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Although many tasks intrinsically involve multiple modalities, often only data from a single modality are used to improve complex robots acquisition of new skills. We present a method to equip robots with multimodal learning skills to achieve multimodal imitation on-the-fly on multiple concurrent task spaces, including vision, touch and proprioception, only using self-learned multimodal sensorimotor relations, without the need of solving inverse kinematic problems or explicit analytical models formulation. We evaluate the proposed method on a humanoid iCub robot learning to interact with a piano keyboard and imitating a human demonstration. Since no assumptions are made on the kinematic structure of the robot, the method can be also applied to different robotic platforms.