The influence of the background model on DNA motif prediction: An assessment for zinc finger transcription factor ZFX

Andrei Lihu, S. Holban
{"title":"The influence of the background model on DNA motif prediction: An assessment for zinc finger transcription factor ZFX","authors":"Andrei Lihu, S. Holban","doi":"10.1109/SACI.2015.7208216","DOIUrl":null,"url":null,"abstract":"Motif finding is a computationally expensive procedure subject to noise and false positives, but of major importance in understanding gene expression and cancer. Several authors argued in favor of using higher order background models to better discriminate motifs. This paper studies the effect of using Markov higher order models in three commonly used algorithms to identify the ZFX transcription factor's binding sites from a mouse embryonic stem cells dataset. We conclude that there are particular Markov orders that yield improved outcomes for each algorithm.","PeriodicalId":312683,"journal":{"name":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2015.7208216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motif finding is a computationally expensive procedure subject to noise and false positives, but of major importance in understanding gene expression and cancer. Several authors argued in favor of using higher order background models to better discriminate motifs. This paper studies the effect of using Markov higher order models in three commonly used algorithms to identify the ZFX transcription factor's binding sites from a mouse embryonic stem cells dataset. We conclude that there are particular Markov orders that yield improved outcomes for each algorithm.
背景模型对DNA基序预测的影响:锌指转录因子ZFX的评估
基序发现是一个计算昂贵的过程,容易受到噪声和假阳性的影响,但在理解基因表达和癌症方面具有重要意义。一些作者主张使用高阶背景模型来更好地区分图案。本文研究了在三种常用算法中使用马尔可夫高阶模型从小鼠胚胎干细胞数据集中识别ZFX转录因子结合位点的效果。我们得出结论,有特定的马尔可夫阶,产生改进的结果,为每个算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信