Generalized method of fuzzy interpolative-type reasoning based on lagrange's interpolation

Baowen Wang, Xiaodong Shao, Wenyuan Liu, Yan Shi
{"title":"Generalized method of fuzzy interpolative-type reasoning based on lagrange's interpolation","authors":"Baowen Wang, Xiaodong Shao, Wenyuan Liu, Yan Shi","doi":"10.1109/ICIMA.2004.1384321","DOIUrl":null,"url":null,"abstract":"When fuvy rule base is sparse, reference (I) proposed a fuzzy interpolative-type reasoning based on Lagrange's interpolation. This fuzzy reasoning method can guarantee the membership function of the inference consequence to be of ~iamgular-fypeiiall ofmembership fyDEtiDllE dfuuy rules and an Observation are given by triangular-type when fuzzy rule base is sparse. But to many membership functions of other type, this method is not applicable. We generalized this method so that this method is applicable to most normal convex fuzzy sets.","PeriodicalId":375056,"journal":{"name":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMA.2004.1384321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

When fuvy rule base is sparse, reference (I) proposed a fuzzy interpolative-type reasoning based on Lagrange's interpolation. This fuzzy reasoning method can guarantee the membership function of the inference consequence to be of ~iamgular-fypeiiall ofmembership fyDEtiDllE dfuuy rules and an Observation are given by triangular-type when fuzzy rule base is sparse. But to many membership functions of other type, this method is not applicable. We generalized this method so that this method is applicable to most normal convex fuzzy sets.
基于拉格朗日插值的广义模糊插值型推理方法
在模糊规则库稀疏的情况下,文献(1)提出了一种基于拉格朗日插值的模糊插值型推理。这种模糊推理方法可以保证推理结果的隶属度函数是不规则的,并且在模糊规则库是稀疏的情况下,给出了一个三角型的观测值。但对于许多其他类型的隶属函数,这种方法就不适用了。对该方法进行了推广,使其适用于大多数正规凸模糊集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信