{"title":"Analysis of electromechanical parameters of electrostatic microrelay with a movable elastic cantilever electrode","authors":"G. I. Efremov, N. Mukhurov, A. Galdetskiy","doi":"10.1117/12.382309","DOIUrl":null,"url":null,"abstract":"Literature provides a sufficient body of information on developments of electrostatic micro relays (EMR) with movable electrode (ME) in the form of a spring cantilever beam. However, little attention has been given to obvious close relationship between required characteristics and the corresponding design solutions of EMR components, which hinders the development of relay constructions optimal for specific working conditions. This paper presents a method for determining values and interrelations of electric and mechanical parameters of EMR's promising for certain applications. Schematically, the EMR consists of a rigid dielectric substrate 1 having a salient part 2 covered with a deposited stationary thin-film electrode (SE) 3 and spring plate 4 upon which a cantilever ME 5 is placed in the area hanging over the salient pat. Contacts 6 of control circuit are located at the electrode ends.","PeriodicalId":318748,"journal":{"name":"Design, Test, Integration, and Packaging of MEMS/MOEMS","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design, Test, Integration, and Packaging of MEMS/MOEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.382309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Literature provides a sufficient body of information on developments of electrostatic micro relays (EMR) with movable electrode (ME) in the form of a spring cantilever beam. However, little attention has been given to obvious close relationship between required characteristics and the corresponding design solutions of EMR components, which hinders the development of relay constructions optimal for specific working conditions. This paper presents a method for determining values and interrelations of electric and mechanical parameters of EMR's promising for certain applications. Schematically, the EMR consists of a rigid dielectric substrate 1 having a salient part 2 covered with a deposited stationary thin-film electrode (SE) 3 and spring plate 4 upon which a cantilever ME 5 is placed in the area hanging over the salient pat. Contacts 6 of control circuit are located at the electrode ends.