Research on classification method of spare parts inventory based on warranty data

Jie Chen, Ting-gui Chen
{"title":"Research on classification method of spare parts inventory based on warranty data","authors":"Jie Chen, Ting-gui Chen","doi":"10.1109/SOLI.2016.7551686","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the warranty data in after sales service, considering the reliability characteristic parameters of spare parts in use (MTBF), supply characteristics (replenishment lead time and supplier scarcity), part cost and part criticality. This paper constructs a multi-criteria classification model for ABC classification of spare parts by using intelligent machine classification approaches - support vector machine (SVM). The main contribution of this study is the interaction between warranty data and the multi-criteria SVM-ABC classification method. A case study is presented to illustrate the model. The test results show the good performance of this model.","PeriodicalId":128068,"journal":{"name":"2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","volume":"4 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2016.7551686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we analyze the warranty data in after sales service, considering the reliability characteristic parameters of spare parts in use (MTBF), supply characteristics (replenishment lead time and supplier scarcity), part cost and part criticality. This paper constructs a multi-criteria classification model for ABC classification of spare parts by using intelligent machine classification approaches - support vector machine (SVM). The main contribution of this study is the interaction between warranty data and the multi-criteria SVM-ABC classification method. A case study is presented to illustrate the model. The test results show the good performance of this model.
基于保修数据的备件库存分类方法研究
本文对售后服务中的保修数据进行了分析,考虑了在用备件的可靠性特征参数(MTBF)、供应特征(补货提前期和供应商稀缺性)、零件成本和零件临界性。利用智能机器分类方法——支持向量机(SVM),构建了备件ABC分类的多准则分类模型。本研究的主要贡献在于保证数据与多准则SVM-ABC分类方法之间的交互作用。最后给出了一个案例来说明该模型。试验结果表明,该模型具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信