Transient Thermal and Electrical Co-Optimization of BEOL Top-Gated ALD In₂O₃ FETs on Various Thermally Conductive Substrates Including Diamond

Pai-Ying Liao, S. Alajlouni, Zuxun Zhang, Z. Lin, M. Si, J. Noh, T. Feygelson, M. Tadjer, A. Shakouri, P. Ye
{"title":"Transient Thermal and Electrical Co-Optimization of BEOL Top-Gated ALD In₂O₃ FETs on Various Thermally Conductive Substrates Including Diamond","authors":"Pai-Ying Liao, S. Alajlouni, Zuxun Zhang, Z. Lin, M. Si, J. Noh, T. Feygelson, M. Tadjer, A. Shakouri, P. Ye","doi":"10.1109/IEDM45625.2022.10019438","DOIUrl":null,"url":null,"abstract":"In this work, we co-optimize the transient thermal and electrical characteristics of top-gated (TG), ultrathin, atomic-layer-deposited (ALD), back-end-of-line (BEOL) compatible indium oxide (In2 O3) transistors on various thermally conductive substrates by visualization of the self-heating effect (SHE) utilizing an ultrafast high-resolution (HR) thermo-reflectance (TR) imaging system and overcome the thermal challenges through substrate thermal management and short-pulse measurement. At the steady-state, the temperature increase $(\\Delta \\mathrm{T})$ of the devices on highly resistive silicon (HR Si) and diamond substrates are roughly 6 and 13 times lower than that on SiO $_{2} /$Si substrate, due to the higher thermal conductivities $(\\kappa) $ of HR Si and diamond. Consequently, ultrahigh drain current (ID) of 3.7 mA$/ \\mu \\mathrm{m}$ at drain voltage (VDS) of 1.4 V with direct current (DC) measurement is achieved with TG ALD In2 O3 FETs on diamond substrate. Furthermore, transient thermal study shows that it takes roughly 350 and 300 ns for the devices to heat-up and cool-down to the steady-states, being independent on the substrate. The extracted time constants of heat-up $(\\tau_{h})$ and cool-down $(\\tau_{c})$ processes are 137 and 109 ns, respectively. By employing electrical short-pulse measurement with pulse width (tpulse) shorter than $\\tau_{h}$, the SHE can be significantly reduced. Accordingly, a higher ID of 4.3 mA$/ \\mu \\mathrm{m}$ is realized with a 1.9nm-thick In2 O3 FET on HR Si substrate after co-optimization.","PeriodicalId":275494,"journal":{"name":"2022 International Electron Devices Meeting (IEDM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM45625.2022.10019438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we co-optimize the transient thermal and electrical characteristics of top-gated (TG), ultrathin, atomic-layer-deposited (ALD), back-end-of-line (BEOL) compatible indium oxide (In2 O3) transistors on various thermally conductive substrates by visualization of the self-heating effect (SHE) utilizing an ultrafast high-resolution (HR) thermo-reflectance (TR) imaging system and overcome the thermal challenges through substrate thermal management and short-pulse measurement. At the steady-state, the temperature increase $(\Delta \mathrm{T})$ of the devices on highly resistive silicon (HR Si) and diamond substrates are roughly 6 and 13 times lower than that on SiO $_{2} /$Si substrate, due to the higher thermal conductivities $(\kappa) $ of HR Si and diamond. Consequently, ultrahigh drain current (ID) of 3.7 mA$/ \mu \mathrm{m}$ at drain voltage (VDS) of 1.4 V with direct current (DC) measurement is achieved with TG ALD In2 O3 FETs on diamond substrate. Furthermore, transient thermal study shows that it takes roughly 350 and 300 ns for the devices to heat-up and cool-down to the steady-states, being independent on the substrate. The extracted time constants of heat-up $(\tau_{h})$ and cool-down $(\tau_{c})$ processes are 137 and 109 ns, respectively. By employing electrical short-pulse measurement with pulse width (tpulse) shorter than $\tau_{h}$, the SHE can be significantly reduced. Accordingly, a higher ID of 4.3 mA$/ \mu \mathrm{m}$ is realized with a 1.9nm-thick In2 O3 FET on HR Si substrate after co-optimization.
包括金刚石在内的各种导热衬底上BEOL顶门控ALD的瞬态热电协同优化
在这项工作中,我们利用超快高分辨率(HR)热反射(TR)成像系统,通过自热效应(SHE)的可视化,共同优化了各种导热衬底上顶门控(TG)、超薄、原子层沉积(ALD)、后端线(BEOL)兼容的氧化铟(in2o3)晶体管的瞬态热电特性,并通过衬底热管理和短脉冲测量克服了热挑战。在稳态下,由于高阻硅(HR Si)和金刚石的导热系数$(\kappa) $较高,器件在高阻硅(HR Si)和金刚石衬底上的温升$(\Delta \mathrm{T})$大约比在SiO $_{2} /$ Si衬底上的温升低6倍和13倍。因此,在漏极电压(VDS)为1.4 V时,利用金刚石衬底上的TG ALD in2o3场效应管实现了3.7 mA $/ \mu \mathrm{m}$的超高漏极电流(ID)。此外,瞬态热研究表明,器件的升温和冷却到稳态大约需要350和300 ns,与衬底无关。提取的加热$(\tau_{h})$和冷却$(\tau_{c})$过程的时间常数分别为137和109 ns。通过采用脉冲宽度(tpulse)小于$\tau_{h}$的电短脉冲测量,可以显著降低SHE。因此,通过协同优化,在HR Si衬底上使用1.9nm厚的in2o3 FET实现了4.3 mA $/ \mu \mathrm{m}$的更高ID。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信