RAPTA: A Hierarchical Representation Learning Solution For Real-Time Prediction of Path-Based Static Timing Analysis

Tanmoy Chowdhury, Ashka Vakil, B. S. Latibari, Seyed Aresh Beheshti Shirazi, Ali Mirzaeian, Xiaojie Guo, Sai Manoj Pudukotai Dinakarrao, H. Homayoun, I. Savidis, Liang Zhao, Avesta Sasan
{"title":"RAPTA: A Hierarchical Representation Learning Solution For Real-Time Prediction of Path-Based Static Timing Analysis","authors":"Tanmoy Chowdhury, Ashka Vakil, B. S. Latibari, Seyed Aresh Beheshti Shirazi, Ali Mirzaeian, Xiaojie Guo, Sai Manoj Pudukotai Dinakarrao, H. Homayoun, I. Savidis, Liang Zhao, Avesta Sasan","doi":"10.1145/3526241.3530831","DOIUrl":null,"url":null,"abstract":"This paper presents RAPTA, a customized Representation-learning Architecture for automation of feature engineering and predicting the result of Path-based Timing-Analysis early in the physical design cycle. RAPTA offers multiple advantages compared to prior work: 1) It has superior accuracy with errors std ranges 3.9ps~16.05ps in 32nm technology. 2) RAPTA's architecture does not change with feature-set size, 3) RAPTA does not require manual input feature engineering. To the best of our knowledge, this is the first work, in which Bidirectional Long Short-Term Memory (Bi-LSTM) representation learning is used to digest raw information for feature engineering, where generation of latent features and Multilayer Perceptron (MLP) based regression for timing prediction can be trained end-to-end.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"19 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents RAPTA, a customized Representation-learning Architecture for automation of feature engineering and predicting the result of Path-based Timing-Analysis early in the physical design cycle. RAPTA offers multiple advantages compared to prior work: 1) It has superior accuracy with errors std ranges 3.9ps~16.05ps in 32nm technology. 2) RAPTA's architecture does not change with feature-set size, 3) RAPTA does not require manual input feature engineering. To the best of our knowledge, this is the first work, in which Bidirectional Long Short-Term Memory (Bi-LSTM) representation learning is used to digest raw information for feature engineering, where generation of latent features and Multilayer Perceptron (MLP) based regression for timing prediction can be trained end-to-end.
RAPTA:基于路径的静态时序分析实时预测的分层表示学习解决方案
RAPTA是一种定制的表征学习体系结构,用于特征工程的自动化,并在物理设计周期的早期预测基于路径的时序分析的结果。RAPTA具有以下优点:1)在32nm工艺下,具有较高的精度,误差范围为3.9ps~16.05ps。2) RAPTA的架构不会随着特征集的大小而改变,3)RAPTA不需要人工输入特征工程。据我们所知,这是第一项工作,其中双向长短期记忆(Bi-LSTM)表示学习用于消化特征工程的原始信息,其中潜在特征的生成和基于多层感知器(MLP)的时间预测回归可以端到端进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信