A high-resolution image dehazing GAN model in icing meteorological environment

Xinling Yang, Wenjun Zhou, Chenglin Zuo, Yifan Wang, Bo Peng
{"title":"A high-resolution image dehazing GAN model in icing meteorological environment","authors":"Xinling Yang, Wenjun Zhou, Chenglin Zuo, Yifan Wang, Bo Peng","doi":"10.1117/12.2691796","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a high-resolution GAN model for image dehazing in icing meteorological environment, which strictly follows a physics-driven scattering strategy. First of all, the utilization of sub-pixel convolution realizes the model to remove image artifacts and generate high-resolution images. Secondly, we use Patch-GAN in the discriminator to drive the generator to generate a haze-free image by capturing the details and local information of the image. Furthermore, to restore the texture information of the hazy image and reduce color distortion, the model is jointly trained by multiple loss functions. Experiments show the proposed method achieves advanced performance for image dehazing in icing weather environment.","PeriodicalId":361127,"journal":{"name":"International Conference on Images, Signals, and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Images, Signals, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2691796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a high-resolution GAN model for image dehazing in icing meteorological environment, which strictly follows a physics-driven scattering strategy. First of all, the utilization of sub-pixel convolution realizes the model to remove image artifacts and generate high-resolution images. Secondly, we use Patch-GAN in the discriminator to drive the generator to generate a haze-free image by capturing the details and local information of the image. Furthermore, to restore the texture information of the hazy image and reduce color distortion, the model is jointly trained by multiple loss functions. Experiments show the proposed method achieves advanced performance for image dehazing in icing weather environment.
结冰气象环境下高分辨率图像去雾GAN模型
在本文中,我们提出了一个高分辨率的GAN模型,用于冰冻气象环境下的图像去雾,该模型严格遵循物理驱动散射策略。首先,利用亚像素卷积实现模型去除图像伪影,生成高分辨率图像。其次,我们在鉴别器中使用Patch-GAN,通过捕获图像的细节和局部信息来驱动生成器生成无雾图像。此外,为了恢复模糊图像的纹理信息,减少颜色失真,该模型由多个损失函数联合训练。实验结果表明,该方法对结冰天气环境下的图像去雾效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信