M. Aust, B. Allen, G. Dow, R. Kasody, G. Luong, M. Biedenbender, K. Tan
{"title":"A Ka-band HEMT MMIC 1 watt power amplifier","authors":"M. Aust, B. Allen, G. Dow, R. Kasody, G. Luong, M. Biedenbender, K. Tan","doi":"10.1109/MCS.1993.247480","DOIUrl":null,"url":null,"abstract":"A 34-36-GHz, 1-W, 9-dB-gain monolithic microwave integrated circuit (MMIC) power amplifier which utilizes 0.15- mu m pseudomorphic InGaAs-GaAs high-electron-mobility transistor (HEMT) process technology is discussed. Power amplifier sites across the wafer were fully characterized with an on-wafer pulsed large-signal S-parameter test set. Test results from these amplifier chips showed output powers >30 dBm, with >9-dB gain, and power-added efficiencies >20%. Overall chip size is 4.8 mm*2.3 mm. A two-stage power amplifier module using one chip to drive three chips has been developed. The resulting amplifier module has achieved 3-W output power and 17-dB gain from 34-36 GHz.<<ETX>>","PeriodicalId":173655,"journal":{"name":"IEEE 1993 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1993 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCS.1993.247480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
A 34-36-GHz, 1-W, 9-dB-gain monolithic microwave integrated circuit (MMIC) power amplifier which utilizes 0.15- mu m pseudomorphic InGaAs-GaAs high-electron-mobility transistor (HEMT) process technology is discussed. Power amplifier sites across the wafer were fully characterized with an on-wafer pulsed large-signal S-parameter test set. Test results from these amplifier chips showed output powers >30 dBm, with >9-dB gain, and power-added efficiencies >20%. Overall chip size is 4.8 mm*2.3 mm. A two-stage power amplifier module using one chip to drive three chips has been developed. The resulting amplifier module has achieved 3-W output power and 17-dB gain from 34-36 GHz.<>