Heap data management for limited local memory (LLM) multi-core processors

Ke Bai, Aviral Shrivastava
{"title":"Heap data management for limited local memory (LLM) multi-core processors","authors":"Ke Bai, Aviral Shrivastava","doi":"10.1145/1878961.1879015","DOIUrl":null,"url":null,"abstract":"This paper presents a scheme to manage heap data in the local memory present in each core of a limited local memory (LLM) multi-core processor. While it is possible to manage heap data semi-automatically using software cache, managing heap data of a core through software cache may require changing the code of the other threads. Cross thread modifications are difficult to code and debug, and only become more difficult as we scale the number of cores. We propose a semi-automatic, and scalable scheme for heap data management that hides this complexity in a library with a much natural programming interface. Furthermore, for embedded applications, where the maximum heap size can be known at compile time, we propose optimizations on the heap management to significantly improve the application performance. Experiments on several benchmarks of MiBench executing on the Sony Playstation 3 show that our scheme is easier to use, and if we know the maximum size of heap data, then our optimizations can improve application performance by an average of 14%.","PeriodicalId":118816,"journal":{"name":"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878961.1879015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

This paper presents a scheme to manage heap data in the local memory present in each core of a limited local memory (LLM) multi-core processor. While it is possible to manage heap data semi-automatically using software cache, managing heap data of a core through software cache may require changing the code of the other threads. Cross thread modifications are difficult to code and debug, and only become more difficult as we scale the number of cores. We propose a semi-automatic, and scalable scheme for heap data management that hides this complexity in a library with a much natural programming interface. Furthermore, for embedded applications, where the maximum heap size can be known at compile time, we propose optimizations on the heap management to significantly improve the application performance. Experiments on several benchmarks of MiBench executing on the Sony Playstation 3 show that our scheme is easier to use, and if we know the maximum size of heap data, then our optimizations can improve application performance by an average of 14%.
有限本地内存(LLM)多核处理器的堆数据管理
本文提出了一种管理有限本地内存(LLM)多核处理器中每个内核的本地内存中的堆数据的方案。虽然可以使用软件缓存半自动地管理堆数据,但通过软件缓存管理核心的堆数据可能需要更改其他线程的代码。跨线程修改很难编码和调试,而且随着内核数量的增加,它只会变得更加困难。我们提出了一种半自动的、可伸缩的堆数据管理方案,该方案将这种复杂性隐藏在一个具有非常自然的编程接口的库中。此外,对于可以在编译时知道最大堆大小的嵌入式应用程序,我们建议对堆管理进行优化,以显著提高应用程序的性能。在索尼Playstation 3上执行MiBench的几个基准测试实验表明,我们的方案更容易使用,如果我们知道堆数据的最大大小,那么我们的优化可以将应用程序性能平均提高14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信