Design of SAR ADC with DAC for High-Performance Force Sensing Detector

W. Lai, Yen-Chang Chen
{"title":"Design of SAR ADC with DAC for High-Performance Force Sensing Detector","authors":"W. Lai, Yen-Chang Chen","doi":"10.1109/ECICE50847.2020.9302000","DOIUrl":null,"url":null,"abstract":"This article introduces successive approximation register (SAR) analog to digital converter (ADC) for force sensor applications. The proposed paper is 24-bit SAR ADC that achieves exceptional quality while power dissipation of drop heavy in 24-bit SAR ADC. The proposed article uses method of machine learning with convolutional neural network post signal detection to calibration force sensor. The produced proposal of calibration is illustrated to be immune to the interference from the conditions and fulfills the exceptional resolution of SAR ADC on force experiments. Enhanced accuracy should obtain via the probability dependent estimation. All results of simulation depict enhanced accuracy even in a noisy circumstance.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"460 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9302000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article introduces successive approximation register (SAR) analog to digital converter (ADC) for force sensor applications. The proposed paper is 24-bit SAR ADC that achieves exceptional quality while power dissipation of drop heavy in 24-bit SAR ADC. The proposed article uses method of machine learning with convolutional neural network post signal detection to calibration force sensor. The produced proposal of calibration is illustrated to be immune to the interference from the conditions and fulfills the exceptional resolution of SAR ADC on force experiments. Enhanced accuracy should obtain via the probability dependent estimation. All results of simulation depict enhanced accuracy even in a noisy circumstance.
基于DAC的高性能力感传感器SAR ADC设计
本文介绍了用于力传感器的逐次逼近寄存器(SAR)模数转换器(ADC)。本文提出的是一种24位SAR ADC,在24位SAR ADC功耗下降严重的情况下,能够获得优异的质量。本文采用卷积神经网络后信号检测的机器学习方法对力传感器进行标定。所提出的校正方案不受外界条件的干扰,能够满足SAR ADC在力实验中的特殊分辨率。通过概率相关的估计来提高精度。所有仿真结果都表明,即使在噪声环境下,精度也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信