Zoliekha Abdollahi, M. Hantehzadeh, A. Khaki‐Sedigh, H. Khaledi
{"title":"Multilinear Modeling and Identification of the V94.2 Gas Turbine for Control System Design Purposes","authors":"Zoliekha Abdollahi, M. Hantehzadeh, A. Khaki‐Sedigh, H. Khaledi","doi":"10.1109/EMS.2010.55","DOIUrl":null,"url":null,"abstract":"Gas turbines are used widely in power generation, oil and gas industries, process plants and aviation. Efficiency and reliability is crucial in such applications. Hence, accurate modeling and control system designing is necessary. This paper first presents a nonlinear modeling of a single-shaft gas turbine in power generation application. This model is developed by solving differential and algebraic thermo dynamic equations and using turbine's component maps. Using this complex model, a number of linear models is identified around turbine's operating points. Effect of frequency and ambient condition is also considered in the models. Comparing these models, reduced number of linear models is selected to cover turbine's entire operating range. These models are validated using further identification tests and nonlinear model responses.","PeriodicalId":161746,"journal":{"name":"2010 Fourth UKSim European Symposium on Computer Modeling and Simulation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth UKSim European Symposium on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMS.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Gas turbines are used widely in power generation, oil and gas industries, process plants and aviation. Efficiency and reliability is crucial in such applications. Hence, accurate modeling and control system designing is necessary. This paper first presents a nonlinear modeling of a single-shaft gas turbine in power generation application. This model is developed by solving differential and algebraic thermo dynamic equations and using turbine's component maps. Using this complex model, a number of linear models is identified around turbine's operating points. Effect of frequency and ambient condition is also considered in the models. Comparing these models, reduced number of linear models is selected to cover turbine's entire operating range. These models are validated using further identification tests and nonlinear model responses.