Parametric model for image blur kernel estimation

Ao Zhang, Yu Zhu, Jinqiu Sun, Min Wang, Yanning Zhang
{"title":"Parametric model for image blur kernel estimation","authors":"Ao Zhang, Yu Zhu, Jinqiu Sun, Min Wang, Yanning Zhang","doi":"10.1109/ICOT.2018.8705790","DOIUrl":null,"url":null,"abstract":"This paper we propose an novel parametric approach for single image kernel estimation with both motion blur and Gaussian blur coupled. In the view of that daily pictures captured by handheld device usually contain motion blur and defocus simultaneously. During one shot, the moving trail of the object can be always regarded as straight and consecutive, and the defocus phenomenon is related to Gaussian blur. Therefore, a parameter model containing three parameters can describe the blur. First, we estimate a rough blur kernel using L1 prior method, then we fit the kernel by computing the three parameters. Finally, the sharp image with clear details is restored by the kernel estimated. Experimental results show that the proposed method outperforms others when the blur kernel is fairly parameterized, which helps the current blind deconvolution methods achieve better results.","PeriodicalId":402234,"journal":{"name":"2018 International Conference on Orange Technologies (ICOT)","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Orange Technologies (ICOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2018.8705790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper we propose an novel parametric approach for single image kernel estimation with both motion blur and Gaussian blur coupled. In the view of that daily pictures captured by handheld device usually contain motion blur and defocus simultaneously. During one shot, the moving trail of the object can be always regarded as straight and consecutive, and the defocus phenomenon is related to Gaussian blur. Therefore, a parameter model containing three parameters can describe the blur. First, we estimate a rough blur kernel using L1 prior method, then we fit the kernel by computing the three parameters. Finally, the sharp image with clear details is restored by the kernel estimated. Experimental results show that the proposed method outperforms others when the blur kernel is fairly parameterized, which helps the current blind deconvolution methods achieve better results.
图像模糊核估计的参数化模型
本文提出了一种运动模糊和高斯模糊相结合的单幅图像核估计的参数化方法。鉴于手持设备拍摄的日常照片通常同时包含动态模糊和散焦。在一次拍摄中,物体的运动轨迹始终可以看作是直线和连续的,散焦现象与高斯模糊有关。因此,一个包含三个参数的参数模型可以描述模糊。首先利用L1先验方法估计粗略模糊核,然后通过计算三个参数对核进行拟合。最后,利用核估计恢复出细节清晰的清晰图像。实验结果表明,在模糊核参数化较好的情况下,该方法优于其他盲反褶积方法,有助于现有盲反褶积方法取得更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信