Preliminary Results on 2-D Simultaneous Localization and Mapping for Aerial Robots in Dynamics Environments

Manuel Simas, Bruno J. Guerreiro, P. Batista
{"title":"Preliminary Results on 2-D Simultaneous Localization and Mapping for Aerial Robots in Dynamics Environments","authors":"Manuel Simas, Bruno J. Guerreiro, P. Batista","doi":"10.1109/RITAPP.2019.8932884","DOIUrl":null,"url":null,"abstract":"This paper presents the design and validation of an Extend Kalman Filter (EKF) for Simultaneous Localization and Mapping with Moving Objects Tracking (SLAMMOT) with application to unmanned aerial vehicles (UAVs) in uncertain and dynamic environments. The proposed solution includes the tracking of Moving Objects (MO) using the Multiple Hypothesis Tracking (MHT) method, as well as the identification of the motion models of the environment’s objects applying the Interacting Multiple Model (IMM) algorithm. The consistency and performance of the devised SLAMMOT filter is successfully confirmed with simulation results.","PeriodicalId":234023,"journal":{"name":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RITAPP.2019.8932884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the design and validation of an Extend Kalman Filter (EKF) for Simultaneous Localization and Mapping with Moving Objects Tracking (SLAMMOT) with application to unmanned aerial vehicles (UAVs) in uncertain and dynamic environments. The proposed solution includes the tracking of Moving Objects (MO) using the Multiple Hypothesis Tracking (MHT) method, as well as the identification of the motion models of the environment’s objects applying the Interacting Multiple Model (IMM) algorithm. The consistency and performance of the devised SLAMMOT filter is successfully confirmed with simulation results.
动态环境下航空机器人二维同步定位与制图的初步结果
本文提出了一种扩展卡尔曼滤波器(EKF)的设计和验证,该滤波器适用于不确定和动态环境下的无人机运动目标跟踪(SLAMMOT)的同时定位和映射。提出的解决方案包括使用多假设跟踪(MHT)方法跟踪运动对象(MO),以及使用交互多模型(IMM)算法识别环境对象的运动模型。仿真结果成功地验证了所设计的SLAMMOT滤波器的一致性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信