Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm

Mikica Drenovak, V. Rankovic, B. Urosevic, R. Jelic
{"title":"Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm","authors":"Mikica Drenovak, V. Rankovic, B. Urosevic, R. Jelic","doi":"10.2139/ssrn.3892289","DOIUrl":null,"url":null,"abstract":"Abstract We develop a novel Mean-Max Drawdown portfolio optimization approach using buy-and-hold portfolios. The optimization is performed utilizing a multi-objective evolutionary algorithm on a sample of S&P 100 constituents. Our optimization procedure provides portfolios with better Mean-Max Drawdown trade-offs compared to relevant benchmarks, regardless of the selected subsamples and market conditions. The superior performance of our approach is particularly pronounced in periods with reversing market trends (i.e. a market rally and a fall in the same subsample).","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3892289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract We develop a novel Mean-Max Drawdown portfolio optimization approach using buy-and-hold portfolios. The optimization is performed utilizing a multi-objective evolutionary algorithm on a sample of S&P 100 constituents. Our optimization procedure provides portfolios with better Mean-Max Drawdown trade-offs compared to relevant benchmarks, regardless of the selected subsamples and market conditions. The superior performance of our approach is particularly pronounced in periods with reversing market trends (i.e. a market rally and a fall in the same subsample).
基于多目标进化算法的买入持有投资组合均值最大回撤优化
摘要本文提出了一种基于买入持有组合的均值-最大回撤组合优化方法。优化是利用多目标进化算法对标准普尔100成分样本进行的。与相关基准相比,我们的优化程序为投资组合提供了更好的Mean-Max Drawdown权衡,无论所选择的子样本和市场条件如何。在市场趋势逆转的时期(即同一子样本中的市场上涨和下跌),我们的方法的优越表现尤为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信