{"title":"Super-Resolution FMCW Radar System at 60 GHz for 3D Measurements","authors":"D. Damyanov, T. Schultze, I. Willms","doi":"10.1109/IWMTS.2018.8454688","DOIUrl":null,"url":null,"abstract":"For the purpose of high-precision Radar Object Recognition (OR) system for real life emergency scenarios, a 60 GHz Super-Resolution FMCW radar imaging system is presented in this paper. Conventional radar imaging systems are limited by different hardware parameters such as bandwidth and antenna pattern resulting in distorted and noisy low-resolution (LR) images hindering the possibility of correct object recognition. Hence the radar imaging system proposed in this paper provides super-resolution (SR) images based on SR reconstruction methods typically used for low-cost optical components. Furthermore, the proposed SR radar system uses a low-cost single chip 60 GHz FMCW radar with two Rx antennas and one Tx antenna in a quasi monostatic configuration. The experimental validations are performed with geometrically complex targets by acquiring 3D radar images.","PeriodicalId":267901,"journal":{"name":"2018 First International Workshop on Mobile Terahertz Systems (IWMTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Workshop on Mobile Terahertz Systems (IWMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMTS.2018.8454688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For the purpose of high-precision Radar Object Recognition (OR) system for real life emergency scenarios, a 60 GHz Super-Resolution FMCW radar imaging system is presented in this paper. Conventional radar imaging systems are limited by different hardware parameters such as bandwidth and antenna pattern resulting in distorted and noisy low-resolution (LR) images hindering the possibility of correct object recognition. Hence the radar imaging system proposed in this paper provides super-resolution (SR) images based on SR reconstruction methods typically used for low-cost optical components. Furthermore, the proposed SR radar system uses a low-cost single chip 60 GHz FMCW radar with two Rx antennas and one Tx antenna in a quasi monostatic configuration. The experimental validations are performed with geometrically complex targets by acquiring 3D radar images.