On the optimization power of retiming and resynthesis transformations

R. Ranjan, V. Singhal, F. Somenzi, R. Brayton
{"title":"On the optimization power of retiming and resynthesis transformations","authors":"R. Ranjan, V. Singhal, F. Somenzi, R. Brayton","doi":"10.1145/288548.289061","DOIUrl":null,"url":null,"abstract":"Retiming and resynthesis transformations can be used for optimizing the area, power, and delay of sequential circuits. Even though this technique has been known for more than a decade, its exact optimization capability has not been formally established. We show that retiming and resynthesis can exactly implement 1-step equivalent state transition graph transformations. This result is the strongest to date. We also show how the notions of retiming and resynthesis can be moderately extended to achieve more powerful state transition graph transformations. Our work will provide theoretical foundation for practical retiming and resynthesis based optimization and verification.","PeriodicalId":224802,"journal":{"name":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","volume":"EMC-18 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.289061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Retiming and resynthesis transformations can be used for optimizing the area, power, and delay of sequential circuits. Even though this technique has been known for more than a decade, its exact optimization capability has not been formally established. We show that retiming and resynthesis can exactly implement 1-step equivalent state transition graph transformations. This result is the strongest to date. We also show how the notions of retiming and resynthesis can be moderately extended to achieve more powerful state transition graph transformations. Our work will provide theoretical foundation for practical retiming and resynthesis based optimization and verification.
论重定时和再合成变换的优化能力
重定时和重合成变换可用于优化顺序电路的面积、功率和延迟。尽管这种技术已经被发现了十多年,但其确切的优化能力还没有被正式确立。我们证明了重新定时和重新合成可以精确地实现1步等效状态转移图变换。这是迄今为止最强有力的结果。我们还展示了如何适当扩展重新计时和重新合成的概念,以实现更强大的状态转换图转换。我们的工作将为基于重定时和重合成的实际优化和验证提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信