Efficient human activity recognition using hyperdimensional computing

Yeseong Kim, M. Imani, T. Simunic
{"title":"Efficient human activity recognition using hyperdimensional computing","authors":"Yeseong Kim, M. Imani, T. Simunic","doi":"10.1145/3277593.3277617","DOIUrl":null,"url":null,"abstract":"Human activity recognition is a key task of many Internet of Things (IoT) applications to understand underlying contexts and react with the environments. Machine learning is widely exploited to identify the activities from sensor measurements, however, they are often overcomplex to run on less-powerful IoT devices. In this paper, we present an alternative approach to efficiently support the activity recognition tasks using brain-inspired hyperdimensional (HD) computing. We show how the HD computing method can be applied to the recognition problem in IoT systems while improving the accuracy and efficiency. In our evaluation conducted for three practical datasets, the proposed design achieves the speedup of the model training by up to 486x as compared to the state-of-the-art neural network training. In addition, our design improves the performance of the HD-based inference procedure by 7x on a low-power ARM processor.","PeriodicalId":129822,"journal":{"name":"Proceedings of the 8th International Conference on the Internet of Things","volume":"438 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on the Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277593.3277617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Human activity recognition is a key task of many Internet of Things (IoT) applications to understand underlying contexts and react with the environments. Machine learning is widely exploited to identify the activities from sensor measurements, however, they are often overcomplex to run on less-powerful IoT devices. In this paper, we present an alternative approach to efficiently support the activity recognition tasks using brain-inspired hyperdimensional (HD) computing. We show how the HD computing method can be applied to the recognition problem in IoT systems while improving the accuracy and efficiency. In our evaluation conducted for three practical datasets, the proposed design achieves the speedup of the model training by up to 486x as compared to the state-of-the-art neural network training. In addition, our design improves the performance of the HD-based inference procedure by 7x on a low-power ARM processor.
利用超维计算进行高效的人类活动识别
人类活动识别是许多物联网(IoT)应用的关键任务,用于理解底层上下文并对环境做出反应。机器学习被广泛用于识别传感器测量的活动,然而,它们通常过于复杂,无法在功能较弱的物联网设备上运行。在本文中,我们提出了一种替代方法来有效地支持使用脑启发的超维(HD)计算的活动识别任务。我们展示了如何将高清计算方法应用于物联网系统中的识别问题,同时提高准确性和效率。在我们对三个实际数据集进行的评估中,与最先进的神经网络训练相比,所提出的设计实现了高达486倍的模型训练加速。此外,我们的设计将基于hd的推理程序在低功耗ARM处理器上的性能提高了7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信