Erind Ujkani, J. Dybedal, Atle Aalerud, Knut B. Kaldestad, G. Hovland
{"title":"Visual Marker Guided Point Cloud Registration in a Large Multi-Sensor Industrial Robot Cell","authors":"Erind Ujkani, J. Dybedal, Atle Aalerud, Knut B. Kaldestad, G. Hovland","doi":"10.1109/MESA.2018.8449195","DOIUrl":null,"url":null,"abstract":"This paper presents a benchmark and accuracy analysis of 3D sensor calibration in a large industrial robot cell. The sensors used were the Kinect v2 which contains both an RGB and an IR camera measuring depth based on the time-of-flight principle. The approach taken was based on a novel procedure combining Aruco visual markers, methods using region of interest and iterative closest point. The calibration of sensors is performed pairwise, exploiting the fact that time-of-flight sensors can have some overlap in the generated point cloud data. For a volume measuring 10m × 14m × 5m a typical accuracy of the generated point cloud data of 5–10cm was achieved using six sensor nodes.","PeriodicalId":138936,"journal":{"name":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MESA.2018.8449195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
This paper presents a benchmark and accuracy analysis of 3D sensor calibration in a large industrial robot cell. The sensors used were the Kinect v2 which contains both an RGB and an IR camera measuring depth based on the time-of-flight principle. The approach taken was based on a novel procedure combining Aruco visual markers, methods using region of interest and iterative closest point. The calibration of sensors is performed pairwise, exploiting the fact that time-of-flight sensors can have some overlap in the generated point cloud data. For a volume measuring 10m × 14m × 5m a typical accuracy of the generated point cloud data of 5–10cm was achieved using six sensor nodes.