E. Monier-Vinard, V. Bissuel, C. Dia, O. Daniel, N. Laraqi
{"title":"Investigation of Delphi compact thermal model style for modeling surface-mounted Soft Magnetic Composite inductor","authors":"E. Monier-Vinard, V. Bissuel, C. Dia, O. Daniel, N. Laraqi","doi":"10.1109/THERMINIC.2013.6675210","DOIUrl":null,"url":null,"abstract":"Recent works on System-In-Package component pointed out that its in-package inductor is the hottest part. It occurs that thermal stresses due to joule heating and magnetic losses can be damaging. The present study focuses on low profile, surface-mounted, Soft Magnetic Composite inductors to define their thermal behaviour and then to propose a guideline to create pertinent models.Results highlight the impact of thermal conductivity of composite core on temperatures and the lack of properties data of iron-resin mixtures. Using mixture model, a calculation of effective thermal conductivity is proposed.To minimize the expensive meshing of the fine detailed simulations and the computation time, a novel Compact Thermal Model for inductor, based on DELPHI methodology, was established. The predictions of CTM model show good agreement, less than 10% of divergence. Further works must be done to really master the coupled interaction of magnetic, joule effect, thermal phenomenon as well as material properties.","PeriodicalId":369128,"journal":{"name":"19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2013.6675210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Recent works on System-In-Package component pointed out that its in-package inductor is the hottest part. It occurs that thermal stresses due to joule heating and magnetic losses can be damaging. The present study focuses on low profile, surface-mounted, Soft Magnetic Composite inductors to define their thermal behaviour and then to propose a guideline to create pertinent models.Results highlight the impact of thermal conductivity of composite core on temperatures and the lack of properties data of iron-resin mixtures. Using mixture model, a calculation of effective thermal conductivity is proposed.To minimize the expensive meshing of the fine detailed simulations and the computation time, a novel Compact Thermal Model for inductor, based on DELPHI methodology, was established. The predictions of CTM model show good agreement, less than 10% of divergence. Further works must be done to really master the coupled interaction of magnetic, joule effect, thermal phenomenon as well as material properties.