{"title":"A 90µW MICS/ISM band transmitter with 22% global efficiency","authors":"J. Pandey, B. Otis","doi":"10.1109/RFIC.2010.5477395","DOIUrl":null,"url":null,"abstract":"For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. We propose a highly integrated 90 µW 400MHz MICS band transmitter with an output power of 20 µW leading to a 22% global efficiency — the highest reported to date for such systems. We introduce a new transmitter architecture based on cascaded multi-phase injection locking and frequency multiplication to enable low power operation and high global efficiency. Our architecture eliminates slow phase/delay-locked loops for frequency synthesis and uses injection locking to achieve a settling time ≪ 250 ns permitting very aggressive duty cycling of the transmitter to conserve energy. At a data-rate of 200 kbps, the transmitter achieves an energy efficiency of 450 pJ/bit. Our 400MHz local oscillator topology demonstrates a figure-of-merit of 204 dB.","PeriodicalId":269027,"journal":{"name":"2010 IEEE Radio Frequency Integrated Circuits Symposium","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2010.5477395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
For fully autonomous implantable or body-worn devices running on harvested energy, the peak and average power dissipation of the radio transmitter must be minimized. We propose a highly integrated 90 µW 400MHz MICS band transmitter with an output power of 20 µW leading to a 22% global efficiency — the highest reported to date for such systems. We introduce a new transmitter architecture based on cascaded multi-phase injection locking and frequency multiplication to enable low power operation and high global efficiency. Our architecture eliminates slow phase/delay-locked loops for frequency synthesis and uses injection locking to achieve a settling time ≪ 250 ns permitting very aggressive duty cycling of the transmitter to conserve energy. At a data-rate of 200 kbps, the transmitter achieves an energy efficiency of 450 pJ/bit. Our 400MHz local oscillator topology demonstrates a figure-of-merit of 204 dB.