High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures

R. King, C. Fetzer, P. Colter, K. Edmondson, J. Ermer, H. Cotal, H. Yoon, A. Stavrides, G. Kinsey, D. Krut, N. H. Karam
{"title":"High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures","authors":"R. King, C. Fetzer, P. Colter, K. Edmondson, J. Ermer, H. Cotal, H. Yoon, A. Stavrides, G. Kinsey, D. Krut, N. H. Karam","doi":"10.1109/PVSC.2002.1190685","DOIUrl":null,"url":null,"abstract":"Using the energy bandgap of semiconductors as a design parameter is critically important for achieving the highest efficiency multijunction solar cells. The bandgaps of lattice-matched semiconductors that are most convenient to use are rarely those which would result in the highest theoretical efficiency. For both the space and terrestrial solar spectra, the efficiency of 3-junction GaInP/GaAs/Ge solar cells can be increased by a lower bandgap middle cell, as for GaInAs middle cells, as well as by using higher bandgap top cell materials. Wide-bandgap and indirect-gap materials used in parasitically absorbing layers such as tunnel junctions help to increase transmission of light to the active cell layers beneath. Control of bandgap in such cell structures has been instrumental in achieving solar cell efficiencies of 29.7% under the AMO space spectrum (0.1353 W/cm/sup 2/, 28/spl deg/C) and 34% under the concentrated terrestrial spectrum (AM1.5G, 150-400 suns, 25/spl deg/C), the highest yet achieved for solar cells built on a single substrate.","PeriodicalId":177538,"journal":{"name":"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2002.1190685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

Using the energy bandgap of semiconductors as a design parameter is critically important for achieving the highest efficiency multijunction solar cells. The bandgaps of lattice-matched semiconductors that are most convenient to use are rarely those which would result in the highest theoretical efficiency. For both the space and terrestrial solar spectra, the efficiency of 3-junction GaInP/GaAs/Ge solar cells can be increased by a lower bandgap middle cell, as for GaInAs middle cells, as well as by using higher bandgap top cell materials. Wide-bandgap and indirect-gap materials used in parasitically absorbing layers such as tunnel junctions help to increase transmission of light to the active cell layers beneath. Control of bandgap in such cell structures has been instrumental in achieving solar cell efficiencies of 29.7% under the AMO space spectrum (0.1353 W/cm/sup 2/, 28/spl deg/C) and 34% under the concentrated terrestrial spectrum (AM1.5G, 150-400 suns, 25/spl deg/C), the highest yet achieved for solar cells built on a single substrate.
通过带隙控制电池结构的高效率空间和地面多结太阳能电池
利用半导体的能带隙作为设计参数对于实现最高效率的多结太阳能电池至关重要。晶格匹配半导体中最方便使用的带隙很少是那些能产生最高理论效率的带隙。对于空间和地面太阳光谱,3结GaInP/GaAs/Ge太阳能电池的效率可以通过较低的带隙中间电池和GaInAs中间电池以及使用较高的带隙顶部电池材料来提高。用于寄生吸收层(如隧道结)的宽带隙和间接隙材料有助于增加光传输到下面的活性细胞层。这种电池结构中的带隙控制有助于在AMO空间光谱(0.1353 W/cm/sup 2/, 28/spl度/C)下实现29.7%的太阳能电池效率,在集中的地面光谱(AM1.5G, 150-400太阳,25/spl度/C)下实现34%的效率,这是迄今为止在单一衬底上实现的最高太阳能电池效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信