Kyungha Seok, Daehyeon Cho, Changha Hwang, J. Shim
{"title":"Support vector quantile regression using asymmetric e-insensitive loss function","authors":"Kyungha Seok, Daehyeon Cho, Changha Hwang, J. Shim","doi":"10.1109/ICETC.2010.5529214","DOIUrl":null,"url":null,"abstract":"Support vector quantile regression (SVQR) is capable of providing a good description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse SVQR to overcome a weak point of SVQR, nonsparsity. The asymmetric e-insensitive loss function is used to efficiently provide the sparsity Experimental results are then presented; these results illustrate the performance of the proposed method by comparing it with nonsparse SVQR.","PeriodicalId":299461,"journal":{"name":"2010 2nd International Conference on Education Technology and Computer","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Education Technology and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETC.2010.5529214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Support vector quantile regression (SVQR) is capable of providing a good description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse SVQR to overcome a weak point of SVQR, nonsparsity. The asymmetric e-insensitive loss function is used to efficiently provide the sparsity Experimental results are then presented; these results illustrate the performance of the proposed method by comparing it with nonsparse SVQR.