Hafnia-based ferroelectric devices for lower power memory and AI applications

Shinichi Takagi, K. Toprasertpong, E. Nako, M. Takenaka, R. Nakane
{"title":"Hafnia-based ferroelectric devices for lower power memory and AI applications","authors":"Shinichi Takagi, K. Toprasertpong, E. Nako, M. Takenaka, R. Nakane","doi":"10.1109/EDTM55494.2023.10102996","DOIUrl":null,"url":null,"abstract":"We address our recent activities on TiN/HfZrO2 (HZO)/TiN MFM capacitors, HZO/Si FeFETs for memory applications, and reservoir computing using HZO/Si FeFETs for AI applications. We have shown that MFM capacitors with 4-nm-thick HZO realizes low operating voltage and high read/write endurance. We have pointed out the importance of a large amount of electron traps in HZO on the FeFET memory characteristics. Also, we have demonstrated reservoir computing using FeFETs for applications of speech recognition.","PeriodicalId":418413,"journal":{"name":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM55494.2023.10102996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address our recent activities on TiN/HfZrO2 (HZO)/TiN MFM capacitors, HZO/Si FeFETs for memory applications, and reservoir computing using HZO/Si FeFETs for AI applications. We have shown that MFM capacitors with 4-nm-thick HZO realizes low operating voltage and high read/write endurance. We have pointed out the importance of a large amount of electron traps in HZO on the FeFET memory characteristics. Also, we have demonstrated reservoir computing using FeFETs for applications of speech recognition.
基于铪的铁电器件,用于低功耗存储器和人工智能应用
我们讨论了我们最近在TiN/HfZrO2 (HZO)/TiN MFM电容器,用于存储应用的HZO/Si fefet以及用于AI应用的HZO/Si fefet的储层计算方面的活动。我们已经证明,具有4nm厚HZO的MFM电容器实现了低工作电压和高读写耐久性。我们指出了HZO中大量的电子陷阱对ffet存储特性的重要性。此外,我们还演示了将场效应管用于语音识别应用的储层计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信