Approximation of Quantum States Using Decision Diagrams

Alwin Zulehner, S. Hillmich, I. Markov, R. Wille
{"title":"Approximation of Quantum States Using Decision Diagrams","authors":"Alwin Zulehner, S. Hillmich, I. Markov, R. Wille","doi":"10.1109/ASP-DAC47756.2020.9045454","DOIUrl":null,"url":null,"abstract":"The computational power of quantum computers poses major challenges to new design tools since representing pure quantum states typically requires exponentially large memory. As shown previously, decision diagrams can reduce these memory requirements by exploiting redundancies. In this work, we demonstrate further reductions by allowing for small inaccuracies in the quantum state representation. Such inaccuracies are legitimate since quantum computers themselves experience gate and measurement errors and since quantum algorithms are somewhat resistant to errors (even without error correction). We develop four dedicated schemes that exploit these observations and effectively approximate quantum states represented by decision diagrams. We empirically show that the proposed schemes reduce the size of decision diagrams by up to several orders of magnitude while controlling the fidelity of approximate quantum state representations.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"42 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The computational power of quantum computers poses major challenges to new design tools since representing pure quantum states typically requires exponentially large memory. As shown previously, decision diagrams can reduce these memory requirements by exploiting redundancies. In this work, we demonstrate further reductions by allowing for small inaccuracies in the quantum state representation. Such inaccuracies are legitimate since quantum computers themselves experience gate and measurement errors and since quantum algorithms are somewhat resistant to errors (even without error correction). We develop four dedicated schemes that exploit these observations and effectively approximate quantum states represented by decision diagrams. We empirically show that the proposed schemes reduce the size of decision diagrams by up to several orders of magnitude while controlling the fidelity of approximate quantum state representations.
用决策图逼近量子态
量子计算机的计算能力对新的设计工具提出了重大挑战,因为表示纯量子态通常需要指数级大的内存。如前所述,决策图可以通过利用冗余来减少这些内存需求。在这项工作中,我们通过允许量子态表示中的小误差来进一步减少。这种不准确性是合理的,因为量子计算机本身会出现门和测量误差,而且量子算法在某种程度上对误差有抵抗力(即使没有纠错)。我们开发了四种专门的方案来利用这些观察结果并有效地近似决策图所表示的量子态。我们的经验表明,所提出的方案在控制近似量子态表示的保真度的同时,将决策图的大小减少了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信