Inference in Models of Discrete Choice with Social Interactions Using Network Data

Michael P. Leung
{"title":"Inference in Models of Discrete Choice with Social Interactions Using Network Data","authors":"Michael P. Leung","doi":"10.2139/ssrn.3446926","DOIUrl":null,"url":null,"abstract":"This paper studies inference in models of discrete choice with social interactions when the data consists of a single large network. We provide theoretical justification for the use of spatial and network HAC variance estimators in applied work, the latter constructed by using network path distance in place of spatial distance. Toward this end, we prove new central limit theorems for network moments in a large class of social interactions models. The results are applicable to discrete games on networks and dynamic models where social interactions enter through lagged dependent variables. We illustrate our results in an empirical application and simulation study.","PeriodicalId":423216,"journal":{"name":"Game Theory & Bargaining Theory eJournal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Theory & Bargaining Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3446926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper studies inference in models of discrete choice with social interactions when the data consists of a single large network. We provide theoretical justification for the use of spatial and network HAC variance estimators in applied work, the latter constructed by using network path distance in place of spatial distance. Toward this end, we prove new central limit theorems for network moments in a large class of social interactions models. The results are applicable to discrete games on networks and dynamic models where social interactions enter through lagged dependent variables. We illustrate our results in an empirical application and simulation study.
基于网络数据的社会互动离散选择模型的推理
本文研究了当数据由单个大网络构成时,具有社会交互作用的离散选择模型的推理问题。本文为在实际工作中使用空间和网络HAC方差估计提供了理论依据,后者是用网络路径距离代替空间距离来构建的。为此,我们在一大类社会互动模型中证明了新的网络时刻中心极限定理。结果适用于网络上的离散游戏和动态模型,其中社会互动通过滞后因变量进入。我们通过实证应用和模拟研究来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信