{"title":"Thermal-aware fault-tolerant system design with coarse-grained reconfigurable array architecture","authors":"Ganghee Lee, Kiyoung Choi","doi":"10.1109/AHS.2010.5546249","DOIUrl":null,"url":null,"abstract":"Coarse-grained reconfigurable array architectures have drawn increasing attention due to their performance and flexibility. A typical coarse-grained reconfigurable array architecture has many PEs in the array, which is suitable for implementing spatial redundancy used for fault-tolerant systems design. In this paper, we propose to implement replications and a voting function on the PE array of a coarse-grained reconfigurable array architecture to design a fault-tolerant system. We also introduce thermal-aware application mapping onto the coarse-grained reconfigurable array architecture for reliability. The experiment with Viterbi decoder shows that our approach enables implementing fault-tolerance with 12% area overhead which comes from implementing conditional execution.","PeriodicalId":101655,"journal":{"name":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2010.5546249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Coarse-grained reconfigurable array architectures have drawn increasing attention due to their performance and flexibility. A typical coarse-grained reconfigurable array architecture has many PEs in the array, which is suitable for implementing spatial redundancy used for fault-tolerant systems design. In this paper, we propose to implement replications and a voting function on the PE array of a coarse-grained reconfigurable array architecture to design a fault-tolerant system. We also introduce thermal-aware application mapping onto the coarse-grained reconfigurable array architecture for reliability. The experiment with Viterbi decoder shows that our approach enables implementing fault-tolerance with 12% area overhead which comes from implementing conditional execution.