A Permutation Algorithm of Frequency-Domain Blind Source Separation Based on Influence Weights

Weihong Fu, Tianqi Wu
{"title":"A Permutation Algorithm of Frequency-Domain Blind Source Separation Based on Influence Weights","authors":"Weihong Fu, Tianqi Wu","doi":"10.54646/bijscit.015","DOIUrl":null,"url":null,"abstract":"In the frequency domain, convolutive mixes with blind source separation can be successfully resolved. But the permutation issue in frequency-domain blind source separation needs to be resolved. We investigated the impact of frequency space and separation performance at each frequency bin on the amplitude correlation permutation algorithm with the goal of addressing the permutation ambiguity problem in frequency-domain blind source separation of convolutive mixtures, and we proposed an enhanced permutation algorithm. The improved algorithm uses spacing influence weight and performance influence weight to control the influence of the frequency bins sorted in the neighborhood on the frequency bins unsorted. Experiments have shown that the two influence weights are effective. Finally, blind source separation experiments are performed on the speech signals under the two convolutive mixing models and the simulated room mixing model. According to experiments, the increased signal to interference plus noise ratio of separated signals demonstrates that the improved algorithm outperforms the amplitude correlation permutation algorithm in terms of separation performance and robustness.","PeriodicalId":112029,"journal":{"name":"BOHR International Journal of Smart Computing and Information Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BOHR International Journal of Smart Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54646/bijscit.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the frequency domain, convolutive mixes with blind source separation can be successfully resolved. But the permutation issue in frequency-domain blind source separation needs to be resolved. We investigated the impact of frequency space and separation performance at each frequency bin on the amplitude correlation permutation algorithm with the goal of addressing the permutation ambiguity problem in frequency-domain blind source separation of convolutive mixtures, and we proposed an enhanced permutation algorithm. The improved algorithm uses spacing influence weight and performance influence weight to control the influence of the frequency bins sorted in the neighborhood on the frequency bins unsorted. Experiments have shown that the two influence weights are effective. Finally, blind source separation experiments are performed on the speech signals under the two convolutive mixing models and the simulated room mixing model. According to experiments, the increased signal to interference plus noise ratio of separated signals demonstrates that the improved algorithm outperforms the amplitude correlation permutation algorithm in terms of separation performance and robustness.
基于影响权重的频域盲源分离置换算法
在频域,采用盲源分离的卷积混频可以得到很好的解耦。但频域盲源分离中的置换问题需要解决。针对卷积混合信号频域盲源分离中存在的置换模糊问题,研究了频率空间和各频域分离性能对幅值相关置换算法的影响,提出了一种增强的置换算法。改进算法利用间隔影响权值和性能影响权值来控制在邻域内排序的频箱对未排序的频箱的影响。实验表明,这两种影响权重是有效的。最后,对两种卷积混合模型和模拟室内混合模型下的语音信号进行盲源分离实验。实验表明,分离信号的信噪比提高,表明改进算法在分离性能和鲁棒性方面优于幅度相关置换算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信