Deciding the Satisfiability of Propositional Formulas in Finitely-Valued Signed Logics

V. Chepoi, N. Creignou, M. Hermann, G. Salzer
{"title":"Deciding the Satisfiability of Propositional Formulas in Finitely-Valued Signed Logics","authors":"V. Chepoi, N. Creignou, M. Hermann, G. Salzer","doi":"10.1109/ISMVL.2008.41","DOIUrl":null,"url":null,"abstract":"Signed logic is a way of expressing the semantics of many-valued connectives and quantifiers in a formalism that is well-suited for automated reasoning. In this paper we consider propositional, finitely-valued formulas in clausal normal form. We show that checking the satisfiability of formulas with three or more literals per clause is either NP-complete or trivial, depending on whether the intersection of all signs is empty or not. The satisfiability of bijunctive formulas, i.e., formulas with at most two literals per clause, is decidable in linear time if the signs form a Helly family, and is NP-complete otherwise. We present a polynomial-time algorithm for deciding whether a given set of signs satisfies the Helly property. Our results unify and extend previous results obtained for particular sets of signs.","PeriodicalId":243752,"journal":{"name":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2008.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Signed logic is a way of expressing the semantics of many-valued connectives and quantifiers in a formalism that is well-suited for automated reasoning. In this paper we consider propositional, finitely-valued formulas in clausal normal form. We show that checking the satisfiability of formulas with three or more literals per clause is either NP-complete or trivial, depending on whether the intersection of all signs is empty or not. The satisfiability of bijunctive formulas, i.e., formulas with at most two literals per clause, is decidable in linear time if the signs form a Helly family, and is NP-complete otherwise. We present a polynomial-time algorithm for deciding whether a given set of signs satisfies the Helly property. Our results unify and extend previous results obtained for particular sets of signs.
有限值符号逻辑中命题公式的可满足性判定
符号逻辑是一种表达多值连接词和量词语义的形式化方法,非常适合于自动推理。在本文中,我们考虑命题的有限值公式在子句范式。我们证明了检查每个子句有三个或三个以上字面量的公式的可满足性是np完全的或平凡的,这取决于所有符号的交集是否为空。双取公式的可满足性,即每个子句最多有两个字的公式,如果符号构成Helly族,则在线性时间内是可判定的,否则是np完全的。我们提出了一种多项式时间算法来判定一组给定的符号是否满足Helly性质。我们的结果统一并推广了前人对特定符号集所得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信