K. Kawabata, M. Tanizawa, K. Ishikawa, Y. Inoue, M. Inuishi, T. Nishimura
{"title":"Study of current induced magnetic domain wall movement with extremely low energy consumption by micromagnetic simulation","authors":"K. Kawabata, M. Tanizawa, K. Ishikawa, Y. Inoue, M. Inuishi, T. Nishimura","doi":"10.1109/SISPAD.2011.6035048","DOIUrl":null,"url":null,"abstract":"We study the velocity and energy consumption of current induced magnetic domain wall (DW) movement, which is a new paradigm in spintronics devices such as a next generation MRAM and race track memory, by LLG (Landau-Lifshitz-Gilbert) micromagnetic simulation. It is found that DW velocity is almost the same in current in magnetic thin film plane(CIP) and current perpendicular to plane (CPP-Perp.). On the other hand, the energy consumption is much lower in CPP-Perp. than CIP. These results show that the CPP-Perp. structure has potential solutions for high speed and low energy consumption applications","PeriodicalId":264913,"journal":{"name":"2011 International Conference on Simulation of Semiconductor Processes and Devices","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Simulation of Semiconductor Processes and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2011.6035048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We study the velocity and energy consumption of current induced magnetic domain wall (DW) movement, which is a new paradigm in spintronics devices such as a next generation MRAM and race track memory, by LLG (Landau-Lifshitz-Gilbert) micromagnetic simulation. It is found that DW velocity is almost the same in current in magnetic thin film plane(CIP) and current perpendicular to plane (CPP-Perp.). On the other hand, the energy consumption is much lower in CPP-Perp. than CIP. These results show that the CPP-Perp. structure has potential solutions for high speed and low energy consumption applications