A hybrid edge detection model of extreme learning machine and cellular automata

Min Han, Xue Yang, Enda Jiang
{"title":"A hybrid edge detection model of extreme learning machine and cellular automata","authors":"Min Han, Xue Yang, Enda Jiang","doi":"10.1109/ICICIP.2014.7010351","DOIUrl":null,"url":null,"abstract":"For remote sensing image, whose spectral signatures are intricate, the traditional edge detection methods cannot obtain satisfactory results. This paper takes the space computing capacity of Cellular Automata (CA) and the data pattern search ability of Extreme Learning Machine (ELM) into account and puts forward a new hybrid edge detection model based on Extreme Learning Machine and Cellular Automata (ELM-CA) for remotely sensed imagery. This model can extract evolution rules of cellular automata. On the basis of the rules, false edges are removed and purer edge map is obtained. The result of the simulation experiment shows that the performance of method suggested by this paper is much better compared to other edge detection arithmetic operators. It can prove that ELM-CA is an ideal method of remote sensing image edge detection.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For remote sensing image, whose spectral signatures are intricate, the traditional edge detection methods cannot obtain satisfactory results. This paper takes the space computing capacity of Cellular Automata (CA) and the data pattern search ability of Extreme Learning Machine (ELM) into account and puts forward a new hybrid edge detection model based on Extreme Learning Machine and Cellular Automata (ELM-CA) for remotely sensed imagery. This model can extract evolution rules of cellular automata. On the basis of the rules, false edges are removed and purer edge map is obtained. The result of the simulation experiment shows that the performance of method suggested by this paper is much better compared to other edge detection arithmetic operators. It can prove that ELM-CA is an ideal method of remote sensing image edge detection.
极限学习机与元胞自动机的混合边缘检测模型
对于光谱特征复杂的遥感图像,传统的边缘检测方法无法获得满意的结果。本文综合考虑元胞自动机(CA)的空间计算能力和极限学习机(ELM)的数据模式搜索能力,提出了一种基于极限学习机和元胞自动机(ELM-CA)的遥感图像混合边缘检测模型。该模型可以提取元胞自动机的进化规律。在此基础上,去除假边,得到更纯粹的边缘映射。仿真实验结果表明,与其他边缘检测算法相比,本文提出的方法的性能要好得多。证明了ELM-CA是一种理想的遥感图像边缘检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信