Fuzzy PID Control Tuning Design Using Particle Swarm Optimization Algorithm for a Quadrotor

Halima Housny, E. Chater, H. E. Fadil
{"title":"Fuzzy PID Control Tuning Design Using Particle Swarm Optimization Algorithm for a Quadrotor","authors":"Halima Housny, E. Chater, H. E. Fadil","doi":"10.1109/ICOA.2019.8727702","DOIUrl":null,"url":null,"abstract":"This study focuses on tuning the parameters of proportional integral derivative controller (PID). These parameters are traditionally tuned through the Zeigler-Nichols method. However, fuzzy logic control is usually used to online adjust the PID controller parameters. Interestingly, to find the optimal fuzzy controller scaling factors, particle swarm optimization (PSO) may also be used. Nonetheless, in presence of multi-input multi-output (MIMO), nonlinear, and under-actuated systems, a multidimensional tune is necessary, which renders finding the optimal fuzzy-PID controller with PSO algorithm a difficult task. Then, this paper presents an adapted multidimensional PSO algorithm in order to improve the performances of a fuzzy-PID controller for stabilizing a quadrotor system when tracking its reference trajectory. Moreover, to show the effectiveness of this optimization strategy, it is shown that, using simulation tools, the fuzzy-PID controller that is tuned by the proposed multidimensional PSO algorithm could ensure better time domain specifications, in comparison with a classical PID controller.","PeriodicalId":109940,"journal":{"name":"2019 5th International Conference on Optimization and Applications (ICOA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA.2019.8727702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This study focuses on tuning the parameters of proportional integral derivative controller (PID). These parameters are traditionally tuned through the Zeigler-Nichols method. However, fuzzy logic control is usually used to online adjust the PID controller parameters. Interestingly, to find the optimal fuzzy controller scaling factors, particle swarm optimization (PSO) may also be used. Nonetheless, in presence of multi-input multi-output (MIMO), nonlinear, and under-actuated systems, a multidimensional tune is necessary, which renders finding the optimal fuzzy-PID controller with PSO algorithm a difficult task. Then, this paper presents an adapted multidimensional PSO algorithm in order to improve the performances of a fuzzy-PID controller for stabilizing a quadrotor system when tracking its reference trajectory. Moreover, to show the effectiveness of this optimization strategy, it is shown that, using simulation tools, the fuzzy-PID controller that is tuned by the proposed multidimensional PSO algorithm could ensure better time domain specifications, in comparison with a classical PID controller.
基于粒子群算法的四旋翼飞行器模糊PID控制整定设计
本文主要研究比例积分微分控制器(PID)的参数整定问题。这些参数通常是通过Zeigler-Nichols方法进行调整的。然而,模糊逻辑控制通常用于在线调整PID控制器参数。有趣的是,为了找到最优的模糊控制器比例因子,也可以使用粒子群优化(PSO)。然而,在多输入多输出(MIMO)、非线性和欠驱动系统中,多维调谐是必要的,这使得用粒子群算法找到最优模糊pid控制器成为一项艰巨的任务。然后,本文提出了一种自适应多维粒子群算法,以提高模糊pid控制器在四旋翼系统跟踪参考轨迹时的稳定性。此外,为了证明该优化策略的有效性,使用仿真工具表明,与经典PID控制器相比,由所提出的多维粒子群算法调谐的模糊PID控制器可以确保更好的时域规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信