Non-data-aided estimation of signal level in unknown noise using empirical characteristic function

Sina Bakhshandeh Babarsad, S. M. Saberali, A. Forouzan
{"title":"Non-data-aided estimation of signal level in unknown noise using empirical characteristic function","authors":"Sina Bakhshandeh Babarsad, S. M. Saberali, A. Forouzan","doi":"10.1109/IRANIANCEE.2015.7146272","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for signal level estimation in binary phase shift keying (BPSK) modulation based on the empirical characteristic function (ECF), when the probability density function (PDF) of the noise is unknown. Then, we compare our proposed method with two other estimators that are suggested for systems with known noises. Numerical results show that, in the presence of Laplace noise, the ECF estimator has a better performance in low signal-to-noise ratios (SNR) in comparison with previously proposed methods. Moreover, the proposed method does not require the knowledge of noise PDF and works without any training sequence.","PeriodicalId":187121,"journal":{"name":"2015 23rd Iranian Conference on Electrical Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2015.7146272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a new approach for signal level estimation in binary phase shift keying (BPSK) modulation based on the empirical characteristic function (ECF), when the probability density function (PDF) of the noise is unknown. Then, we compare our proposed method with two other estimators that are suggested for systems with known noises. Numerical results show that, in the presence of Laplace noise, the ECF estimator has a better performance in low signal-to-noise ratios (SNR) in comparison with previously proposed methods. Moreover, the proposed method does not require the knowledge of noise PDF and works without any training sequence.
基于经验特征函数的未知噪声中信号电平的非数据辅助估计
本文提出了一种基于经验特征函数(ECF)的二相移键控(BPSK)调制中噪声概率密度函数(PDF)未知的信号电平估计方法。然后,我们将所提出的方法与其他两种已知噪声系统的估计方法进行比较。数值结果表明,在存在拉普拉斯噪声的情况下,与已有方法相比,ECF估计器在低信噪比下具有更好的性能。此外,该方法不需要噪声PDF知识,并且不需要任何训练序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信