Peculiarities of stochastic processes with fractal properties and their applications in problems of navigation information processing

O. S. Amosov
{"title":"Peculiarities of stochastic processes with fractal properties and their applications in problems of navigation information processing","authors":"O. S. Amosov","doi":"10.23919/ICINS.2018.8405867","DOIUrl":null,"url":null,"abstract":"The model of random process with the memory in the form of fractional Brownian motion is offered. The estimation problem definition and its solution within the Bayesian approach for processing the random processes with memory is given in relation to the navigation problems. The application of filtering to the scalar process of fractional Brownian motion is shown by means of the optimum non-recurrent linear filter and the Kalman filter on the example.","PeriodicalId":243907,"journal":{"name":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICINS.2018.8405867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The model of random process with the memory in the form of fractional Brownian motion is offered. The estimation problem definition and its solution within the Bayesian approach for processing the random processes with memory is given in relation to the navigation problems. The application of filtering to the scalar process of fractional Brownian motion is shown by means of the optimum non-recurrent linear filter and the Kalman filter on the example.
具有分形性质的随机过程的特性及其在导航信息处理中的应用
给出了具有分数布朗运动形式记忆的随机过程模型。针对导航问题,给出了处理有记忆随机过程的贝叶斯方法中估计问题的定义及其求解方法。通过最优非循环线性滤波器和卡尔曼滤波器的实例,说明了滤波在分数阶布朗运动标量过程中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信