Iteratively Reweighted ℓ1 Minimization with Nonzero Index Update

B. Tausiesakul
{"title":"Iteratively Reweighted ℓ1 Minimization with Nonzero Index Update","authors":"B. Tausiesakul","doi":"10.1109/EExPolytech53083.2021.9614871","DOIUrl":null,"url":null,"abstract":"The acquisition of a discrete-time signal is an important part of compressive sensing. Instead of ℓ0-norm optimization, much attention is paid to ℓ1-norm problem formulation due to its computability at comparable accuracy. Iteratively reweighted ℓ1 (IRL1) minimization is known to be an improved algorithm of typical ℓ1-norm criterion. In this work, an alternative enhancement of the IRL1-norm criterion is presented. The proposed method invokes a descending sort of the absolute values of all elements in the solution and updates the nonzero indices in each iteration without any additional matrix factorization and matrix inverse. Numerical examples illustrate that for a large number of nonzero elements in the data the proposed nonzero index update can help the IRL1 minimization to perform noticeably better.","PeriodicalId":141827,"journal":{"name":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Engineering and Photonics (EExPolytech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EExPolytech53083.2021.9614871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The acquisition of a discrete-time signal is an important part of compressive sensing. Instead of ℓ0-norm optimization, much attention is paid to ℓ1-norm problem formulation due to its computability at comparable accuracy. Iteratively reweighted ℓ1 (IRL1) minimization is known to be an improved algorithm of typical ℓ1-norm criterion. In this work, an alternative enhancement of the IRL1-norm criterion is presented. The proposed method invokes a descending sort of the absolute values of all elements in the solution and updates the nonzero indices in each iteration without any additional matrix factorization and matrix inverse. Numerical examples illustrate that for a large number of nonzero elements in the data the proposed nonzero index update can help the IRL1 minimization to perform noticeably better.
具有非零索引更新的迭代重加权最小化
离散时间信号的采集是压缩感知的重要组成部分。由于在相当精度下的可计算性,我们更多地关注于1-范数问题的表述,而不是0-范数优化。迭代重加权(IRL1)最小化算法是典型的1-范数准则的一种改进算法。在这项工作中,提出了irl1规范标准的另一种增强方法。该方法对解中所有元素的绝对值进行降序排序,并在每次迭代中更新非零指标,而无需进行额外的矩阵分解和矩阵逆。数值算例表明,对于数据中大量的非零元素,本文提出的非零索引更新方法可以显著提高IRL1最小化算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信