TRAPDROID: Bare-Metal Android Malware Behavior Analysis Framework

Halit Alptekin, Can Yildizli, E. Savaş, A. Levi
{"title":"TRAPDROID: Bare-Metal Android Malware Behavior Analysis Framework","authors":"Halit Alptekin, Can Yildizli, E. Savaş, A. Levi","doi":"10.23919/ICACT.2019.8702030","DOIUrl":null,"url":null,"abstract":"In the realm of mobile devices, malicious applications pose considerable threats to individuals, companies and governments. Cyber security researchers are in a constant race against malware developers and analyze their new methods to exploit them for better detection. In this paper, we present TRAPDROID, a dynamic malware analysis framework mostly focused on capturing unified behavior profiles of applications by analyzing them on physical devices in real-time. Our framework processes events, which are collected from system calls, binder communications, process stats, and hardware performance counters and combines them into a simple, yet meaningful behavior format. We evaluated our framework’s detection rate and performance by analyzing an up-to-date malware dataset, which also contains specially crafted applications with malicious intent. The framework is easy to use, fast and providing high accuracy in malware detection with relatively low overhead.","PeriodicalId":226261,"journal":{"name":"2019 21st International Conference on Advanced Communication Technology (ICACT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT.2019.8702030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the realm of mobile devices, malicious applications pose considerable threats to individuals, companies and governments. Cyber security researchers are in a constant race against malware developers and analyze their new methods to exploit them for better detection. In this paper, we present TRAPDROID, a dynamic malware analysis framework mostly focused on capturing unified behavior profiles of applications by analyzing them on physical devices in real-time. Our framework processes events, which are collected from system calls, binder communications, process stats, and hardware performance counters and combines them into a simple, yet meaningful behavior format. We evaluated our framework’s detection rate and performance by analyzing an up-to-date malware dataset, which also contains specially crafted applications with malicious intent. The framework is easy to use, fast and providing high accuracy in malware detection with relatively low overhead.
TRAPDROID:裸机Android恶意软件行为分析框架
在移动设备领域,恶意应用程序对个人、公司和政府构成了相当大的威胁。网络安全研究人员一直在与恶意软件开发人员竞争,并分析他们的新方法,以便更好地利用它们进行检测。在本文中,我们提出了TRAPDROID,一个动态恶意软件分析框架,主要侧重于通过实时分析物理设备上的应用程序来捕获统一的行为概况。我们的框架处理从系统调用、绑定器通信、进程状态和硬件性能计数器收集的事件,并将它们组合成一个简单而有意义的行为格式。我们通过分析最新的恶意软件数据集来评估框架的检测率和性能,该数据集还包含带有恶意意图的特制应用程序。该框架易于使用,速度快,并且以相对较低的开销提供高精度的恶意软件检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信