{"title":"Design and analysis of a novel flexure-based XY micro-positioning stage driven by electromagnetic actuators","authors":"Shunli Xiao, Yangmin Li, Xinhua Zhao","doi":"10.1109/FPM.2011.6045900","DOIUrl":null,"url":null,"abstract":"The paper presents the design and analysis of a novel compliant flexure-based totally decoupled XY micro-positioning stage which is driven by electromagnetic actuators. The stage is constructed with a very simple structure by employing double parallelogram flexures and four contactless electromagnetic force actuators. The kinematics and dynamic modeling of the mechanical system of the stage are conducted by resorting to compliance and stiffness analysis based on matrix method, and analytical models for electromagnetic forces are also established, both mechanical structure and electromagnetic model are validated by finite element analysis(FEA) via AN-SYS. The mechanical structure is analyzed in a multi-physics environmental simulation and electromagnetic actuators are applied in ANSYS too. Both FEA and the analytical models well demonstrate that the movement of the stage is totally decoupled. With the parameters given in the paper, the moving range can reach 1mm × 1mm and the resolution can reach 0.1 μm at least, which is mainly limited by the displacement sensor's accuracy in our laboratory.","PeriodicalId":241423,"journal":{"name":"Proceedings of 2011 International Conference on Fluid Power and Mechatronics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 International Conference on Fluid Power and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPM.2011.6045900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
The paper presents the design and analysis of a novel compliant flexure-based totally decoupled XY micro-positioning stage which is driven by electromagnetic actuators. The stage is constructed with a very simple structure by employing double parallelogram flexures and four contactless electromagnetic force actuators. The kinematics and dynamic modeling of the mechanical system of the stage are conducted by resorting to compliance and stiffness analysis based on matrix method, and analytical models for electromagnetic forces are also established, both mechanical structure and electromagnetic model are validated by finite element analysis(FEA) via AN-SYS. The mechanical structure is analyzed in a multi-physics environmental simulation and electromagnetic actuators are applied in ANSYS too. Both FEA and the analytical models well demonstrate that the movement of the stage is totally decoupled. With the parameters given in the paper, the moving range can reach 1mm × 1mm and the resolution can reach 0.1 μm at least, which is mainly limited by the displacement sensor's accuracy in our laboratory.