{"title":"Current Status and Future Perspectives of Functional and Smart Materials in Daily Life","authors":"R. Pietschnig","doi":"10.1002/9783527819140.CH1","DOIUrl":null,"url":null,"abstract":"Smart materials in general, are defined as materials with adaptive properties that undergo change upon exposure to an external stimulus. These changing properties can be very diverse including, but not limited to, reversible changes in volume, shape, opacity, or color, which may be triggered by changes in pH, temperature, magnetic/electric fields, or light. Because of their adaptive nature, these properties play a key role in the manufacture of many technical devices used in daily life, and the ability to switch them is the basis for the surging interest in smart materials for emerging technologies and applications. Besides the responsive features outlined above, materials with optoelectronic and thermoelectric properties that allow conversion of light or heat to electricity at different temperature levels are also sometimes termed as smart materials, but will not be covered in this chapter. Self-healing materials that have the intrinsic ability to repair damage have also not been included. On the other hand, shape memory materials are included. In this chapter, a brief outline on the current status and future perspectives of smart materials in daily life will be given, with a special focus on polymeric materials and inorganic polymeric materials in particular.","PeriodicalId":294632,"journal":{"name":"Smart Inorganic Polymers","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Inorganic Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9783527819140.CH1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Smart materials in general, are defined as materials with adaptive properties that undergo change upon exposure to an external stimulus. These changing properties can be very diverse including, but not limited to, reversible changes in volume, shape, opacity, or color, which may be triggered by changes in pH, temperature, magnetic/electric fields, or light. Because of their adaptive nature, these properties play a key role in the manufacture of many technical devices used in daily life, and the ability to switch them is the basis for the surging interest in smart materials for emerging technologies and applications. Besides the responsive features outlined above, materials with optoelectronic and thermoelectric properties that allow conversion of light or heat to electricity at different temperature levels are also sometimes termed as smart materials, but will not be covered in this chapter. Self-healing materials that have the intrinsic ability to repair damage have also not been included. On the other hand, shape memory materials are included. In this chapter, a brief outline on the current status and future perspectives of smart materials in daily life will be given, with a special focus on polymeric materials and inorganic polymeric materials in particular.