A Complex-valued Encoding Seeker Optimization Algorithm for Constrained Engineering Problems

Duan Shaomi, Huilong Luo, Haipeng Liu
{"title":"A Complex-valued Encoding Seeker Optimization Algorithm for Constrained Engineering Problems","authors":"Duan Shaomi, Huilong Luo, Haipeng Liu","doi":"10.37394/23201.2021.20.21","DOIUrl":null,"url":null,"abstract":"This article comes up with a complex-valued encoding seeker optimization algorithm (CSOA) base on the multi-chain method for the constrained engineering optimization problems. The complex value encoding and a multi-link strategy are leaded by the seeker optimization algorithm (SOA). The complex value encoding method is an influential global optimization strategy, and the multi-link is an enhanced local search strategy. These strategies enhance the individuals’ diversity and avert fall into the local optimum. This article chose fifteen benchmark functions, four PID control parameter models, and six constrained engineering problems to test. According to the experimental results, the CSOA algorithm can be used in the benchmark functions, PID control parameters optimization, and optimization constrained engineering problems. Compared to particle swarm optimization (PSO), simulated annealing base on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of CSOA are better.","PeriodicalId":376260,"journal":{"name":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON CIRCUITS AND SYSTEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23201.2021.20.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article comes up with a complex-valued encoding seeker optimization algorithm (CSOA) base on the multi-chain method for the constrained engineering optimization problems. The complex value encoding and a multi-link strategy are leaded by the seeker optimization algorithm (SOA). The complex value encoding method is an influential global optimization strategy, and the multi-link is an enhanced local search strategy. These strategies enhance the individuals’ diversity and avert fall into the local optimum. This article chose fifteen benchmark functions, four PID control parameter models, and six constrained engineering problems to test. According to the experimental results, the CSOA algorithm can be used in the benchmark functions, PID control parameters optimization, and optimization constrained engineering problems. Compared to particle swarm optimization (PSO), simulated annealing base on genetic algorithm (SA_GA), gravitational search algorithm (GSA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), and seeker optimization algorithm (SOA), the optimization ability and robustness of CSOA are better.
约束工程问题的复值编码导引头优化算法
针对约束工程优化问题,提出了一种基于多链方法的复值编码导引头优化算法(CSOA)。复杂值编码和多链路策略由寻道优化算法(SOA)主导。复值编码方法是一种有影响力的全局优化策略,多链接是一种增强的局部搜索策略。这些策略增强了个体的多样性,避免了陷入局部最优。本文选取了15个基准函数、4个PID控制参数模型和6个约束工程问题进行测试。实验结果表明,CSOA算法可用于基准函数、PID控制参数优化和优化约束工程问题。与粒子群优化算法(PSO)、基于遗传算法(SA_GA)的模拟退火算法(SA_GA)、引力搜索算法(GSA)、正余弦算法(SCA)、多宇宙优化器(MVO)和导引头优化算法(SOA)相比,CSOA具有更好的优化能力和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信