Sub-Space Modeling: An Enrollment Solution for XOR Arbiter PUF using Machine Learning

Amir Ali Pour, D. Hély, V. Beroulle, G. D. Natale
{"title":"Sub-Space Modeling: An Enrollment Solution for XOR Arbiter PUF using Machine Learning","authors":"Amir Ali Pour, D. Hély, V. Beroulle, G. D. Natale","doi":"10.1109/isqed54688.2022.9806267","DOIUrl":null,"url":null,"abstract":"—In this work we present sub-space modeling of XOR Arbiter PUF as a cost efficient solution for enrollment for the designers’ community. Our goal is to demonstrate a method which can reduce the overall cost in terms of number of CRPs required for training, training time and memory. Here we propose to reduce the complexity of the modeling target by dividing the PUF into smaller sub-components and model each sub-component of the PUF independently. Our early experimental assessment show that our sub-space modeling can significantly reduce the cost of training compared to some of the latest works, thus it is potentially a cost-efficient solution to enroll strong PUF with high complexity.","PeriodicalId":302936,"journal":{"name":"IEEE International Symposium on Quality Electronic Design","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isqed54688.2022.9806267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—In this work we present sub-space modeling of XOR Arbiter PUF as a cost efficient solution for enrollment for the designers’ community. Our goal is to demonstrate a method which can reduce the overall cost in terms of number of CRPs required for training, training time and memory. Here we propose to reduce the complexity of the modeling target by dividing the PUF into smaller sub-components and model each sub-component of the PUF independently. Our early experimental assessment show that our sub-space modeling can significantly reduce the cost of training compared to some of the latest works, thus it is potentially a cost-efficient solution to enroll strong PUF with high complexity.
子空间建模:基于机器学习的XOR仲裁者PUF注册解决方案
在这项工作中,我们提出了XOR Arbiter PUF的子空间建模,作为设计师社区注册的成本效益解决方案。我们的目标是展示一种方法,可以减少培训所需的crp数量,培训时间和内存方面的总成本。在这里,我们建议通过将PUF划分为更小的子组件并对PUF的每个子组件独立建模来降低建模目标的复杂性。我们的早期实验评估表明,与一些最新的工作相比,我们的子空间建模可以显着降低训练成本,因此,它可能是一种具有高复杂性的强PUF的成本效益解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信