Template-based PDN Synthesis in Floorplan and Placement Using Classifier and CNN Techniques

Vidya A. Chhabria, A. Kahng, Minsoo Kim, U. Mallappa, S. Sapatnekar, Bangqi Xu
{"title":"Template-based PDN Synthesis in Floorplan and Placement Using Classifier and CNN Techniques","authors":"Vidya A. Chhabria, A. Kahng, Minsoo Kim, U. Mallappa, S. Sapatnekar, Bangqi Xu","doi":"10.1109/ASP-DAC47756.2020.9045303","DOIUrl":null,"url":null,"abstract":"Designing an optimal power delivery network (PDN) is a time-intensive task that involves many iterations. This paper proposes a methodology that employs a library of predesigned, stitchable templates, and uses machine learning (ML) to rapidly build a PDN with region-wise uniform pitches based on these templates. Our methodology is applicable at both the floorplan and placement stages of physical implementation. (i) At the floorplan stage, we synthesize an optimized PDN based on early estimates of current and congestion, using a simple multilayer perceptron classifier. (ii) At the placement stage, we incrementally optimize an existing PDN based on more detailed congestion and current distributions, using a convolution neural network. At each stage, the neural network builds a safe-by-construction PDN that meets IR drop and electromigration (EM) specifications. On average, the optimization of the PDN brings an extra 3% of routing resources, which corresponds to a thousands of routing tracks in congestion-critical regions, when compared to a globally uniform PDN, while staying within the IR drop and EM limits.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Designing an optimal power delivery network (PDN) is a time-intensive task that involves many iterations. This paper proposes a methodology that employs a library of predesigned, stitchable templates, and uses machine learning (ML) to rapidly build a PDN with region-wise uniform pitches based on these templates. Our methodology is applicable at both the floorplan and placement stages of physical implementation. (i) At the floorplan stage, we synthesize an optimized PDN based on early estimates of current and congestion, using a simple multilayer perceptron classifier. (ii) At the placement stage, we incrementally optimize an existing PDN based on more detailed congestion and current distributions, using a convolution neural network. At each stage, the neural network builds a safe-by-construction PDN that meets IR drop and electromigration (EM) specifications. On average, the optimization of the PDN brings an extra 3% of routing resources, which corresponds to a thousands of routing tracks in congestion-critical regions, when compared to a globally uniform PDN, while staying within the IR drop and EM limits.
使用分类器和CNN技术在平面图和布局中基于模板的PDN合成
设计最优输电网络(PDN)是一项耗时且需要多次迭代的任务。本文提出了一种方法,该方法使用预先设计的可缝合模板库,并使用机器学习(ML)基于这些模板快速构建具有区域均匀音高的PDN。我们的方法适用于平面图和物理实施的放置阶段。(i)在平面图阶段,我们使用一个简单的多层感知器分类器,基于电流和拥塞的早期估计合成了一个优化的PDN。(ii)在放置阶段,我们使用卷积神经网络,基于更详细的拥塞和电流分布,逐步优化现有的PDN。在每个阶段,神经网络构建一个符合IR下降和电迁移(EM)规范的安全构建PDN。平均而言,与全局统一的PDN相比,PDN的优化带来了额外3%的路由资源,这相当于在拥塞关键区域的数千条路由轨道,同时保持在IR下降和EM限制内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信