G. Xu, J. Bai, C. Torres, E. B. Song, J. Tang, Yanlin Zhou, X. Duan, Y. Zhang, Y. Huang, K. Wang
{"title":"Nanowire-mask based fabrication of high mobility and low noise graphene nanoribbon short-channel field-effect transistors","authors":"G. Xu, J. Bai, C. Torres, E. B. Song, J. Tang, Yanlin Zhou, X. Duan, Y. Zhang, Y. Huang, K. Wang","doi":"10.1109/DRC.2010.5551935","DOIUrl":null,"url":null,"abstract":"Graphene nanoribbon (GNR) is a quasi one-dimensional film, in which a bandgap exists through the quantum confinement and/or localization effect. Compared to bulk graphene, GNR has high potential in achieving high I<inf>on</inf>/I<inf>off</inf> ratio. The carrier mobility of GNR, however, exhibits strong degradation because of the uncontrollable edge roughness and/or states. Most reported GNR-FETs are patterned using ebeam-lithography processes, where the spot size of the electron beam limits the edge smoothness<sup>1</sup>. In this work, we present a GNR fabrication method based on a nanowire-mask, where the edge roughness is determined by the surface roughness of the nanowire (<1nm) <sup>2</sup>. With four-terminal measurement setup, single layer nanoribbon (SLR) devices show μ<inf>hole</inf>∼1180cm<sup>2</sup>/(Vs), I<inf>on</inf>/I<inf>off</inf> >7 and low frequency noise figure A∼10<sup>−6</sup> at 300K. Moreover, short-channel SLR (∼250nm) shows conductance quantization at 77K<sup>3</sup>, and confirms that the quasi-ballistic transport properties can be achieved through this method.","PeriodicalId":396875,"journal":{"name":"68th Device Research Conference","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"68th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2010.5551935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Graphene nanoribbon (GNR) is a quasi one-dimensional film, in which a bandgap exists through the quantum confinement and/or localization effect. Compared to bulk graphene, GNR has high potential in achieving high Ion/Ioff ratio. The carrier mobility of GNR, however, exhibits strong degradation because of the uncontrollable edge roughness and/or states. Most reported GNR-FETs are patterned using ebeam-lithography processes, where the spot size of the electron beam limits the edge smoothness1. In this work, we present a GNR fabrication method based on a nanowire-mask, where the edge roughness is determined by the surface roughness of the nanowire (<1nm) 2. With four-terminal measurement setup, single layer nanoribbon (SLR) devices show μhole∼1180cm2/(Vs), Ion/Ioff >7 and low frequency noise figure A∼10−6 at 300K. Moreover, short-channel SLR (∼250nm) shows conductance quantization at 77K3, and confirms that the quasi-ballistic transport properties can be achieved through this method.