Analog circuit topological feature extraction with unsupervised learning of new sub-structures

Hao Li, Fanshu Jiao, A. Doboli
{"title":"Analog circuit topological feature extraction with unsupervised learning of new sub-structures","authors":"Hao Li, Fanshu Jiao, A. Doboli","doi":"10.3850/9783981537079_0923","DOIUrl":null,"url":null,"abstract":"This paper presents novel techniques to automatically extract the topological (structural) features in analog circuits. The extracted features include basic building blocks, structural templates and hierarchical structures. Finding structural features is important for tasks like circuit synthesis and sizing, design verification, design reuse, and design knowledge description, summarization and management. The paper presents algorithms for supervised feature extraction and unsupervised learning of new block connections. Experiments discuss feature extraction for a set of 34 state-of-the-art analog circuits.","PeriodicalId":311352,"journal":{"name":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/9783981537079_0923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper presents novel techniques to automatically extract the topological (structural) features in analog circuits. The extracted features include basic building blocks, structural templates and hierarchical structures. Finding structural features is important for tasks like circuit synthesis and sizing, design verification, design reuse, and design knowledge description, summarization and management. The paper presents algorithms for supervised feature extraction and unsupervised learning of new block connections. Experiments discuss feature extraction for a set of 34 state-of-the-art analog circuits.
基于新子结构无监督学习的模拟电路拓扑特征提取
本文提出了一种自动提取模拟电路拓扑(结构)特征的新技术。提取的特征包括基本构建块、结构模板和层次结构。寻找结构特征对于电路合成和尺寸确定、设计验证、设计重用以及设计知识描述、总结和管理等任务非常重要。本文提出了新块连接的监督特征提取和无监督学习算法。实验讨论了34个最先进的模拟电路的特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信