Analysis of range and precision for fixed-point linear arithmetic circuits with feedbacks

O. Sarbishei, Yu Pang, K. Radecka
{"title":"Analysis of range and precision for fixed-point linear arithmetic circuits with feedbacks","authors":"O. Sarbishei, Yu Pang, K. Radecka","doi":"10.1109/HLDVT.2010.5496667","DOIUrl":null,"url":null,"abstract":"Analysis of range and precision is always an important task for high level synthesis and verification. Although several researches have been dedicated to these two problems, in the case of linear fixed-point arithmetic circuits with feedbacks such as an Infinite Impulse Response (IIR) filter, conventional approaches are either constituting major overestimations or cannot handle arbitrary order feedback circuits. In this paper we focus on this problem and propose two efficient heuristics for range and precision analysis of such circuits, when the input and error bounds are given. The methods can be used for efficient integer and fractional bit-width allocation in the optimization flow. Moreover, for the purpose of module reusability and matching, verification algorithms have been proposed. Experimental results prove robust computations of range and precision.","PeriodicalId":200068,"journal":{"name":"2010 IEEE International High Level Design Validation and Test Workshop (HLDVT)","volume":"86 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International High Level Design Validation and Test Workshop (HLDVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2010.5496667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Analysis of range and precision is always an important task for high level synthesis and verification. Although several researches have been dedicated to these two problems, in the case of linear fixed-point arithmetic circuits with feedbacks such as an Infinite Impulse Response (IIR) filter, conventional approaches are either constituting major overestimations or cannot handle arbitrary order feedback circuits. In this paper we focus on this problem and propose two efficient heuristics for range and precision analysis of such circuits, when the input and error bounds are given. The methods can be used for efficient integer and fractional bit-width allocation in the optimization flow. Moreover, for the purpose of module reusability and matching, verification algorithms have been proposed. Experimental results prove robust computations of range and precision.
带反馈的定点线性算术电路的量程和精度分析
量程和精度分析一直是高水平综合和验证的重要任务。尽管已经有一些研究致力于这两个问题,但对于具有反馈的线性不动点算术电路,如无限脉冲响应(IIR)滤波器,传统的方法要么构成严重的高估,要么无法处理任意阶反馈电路。本文针对这一问题,在给定输入和误差边界的情况下,提出了两种有效的启发式方法来分析这类电路的范围和精度。该方法可用于优化流程中有效的整数和分数位宽分配。此外,为了实现模块的可重用性和匹配性,提出了验证算法。实验结果证明了该方法的鲁棒性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信