Accelerated stress testing methodology to risk assess silicon-package thermomechanical failure modes resulting from moisture exposure under use condition
S. Rangaraj, Daeil Kwon, M. Pei, J. Hicks, G. Leatherman, A. Lucero, T. Wilson, S. Streit, Jun He
{"title":"Accelerated stress testing methodology to risk assess silicon-package thermomechanical failure modes resulting from moisture exposure under use condition","authors":"S. Rangaraj, Daeil Kwon, M. Pei, J. Hicks, G. Leatherman, A. Lucero, T. Wilson, S. Streit, Jun He","doi":"10.1109/IRPS.2013.6532032","DOIUrl":null,"url":null,"abstract":"IC components are exposed to moisture and thermal cycles during chip-package-board assembly and in their end use conditions. Moisture exposure influences the mechanical integrity of silicon backend dielectrics, assembly/packaging materials and packages. Reliability performance under accelerated stresses that simulate use conditions are often a critical factor in choice of materials, processing options and design rules. A complete assessment of the cumulative environmental exposure from chip-package assembly, shipment/storage, board system assembly, through end-customer use is required to guarantee product performance and reliability. This paper will detail these end user environments and use failure mode/mechanism specific acceleration models to develop accurate accelerated life testing plans and requirements. These requirements will then be compared to JEDEC standards based requirements and a need for re-calibration of these standards to more appropriate temperatures and stress durations will be highlighted.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6532032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
IC components are exposed to moisture and thermal cycles during chip-package-board assembly and in their end use conditions. Moisture exposure influences the mechanical integrity of silicon backend dielectrics, assembly/packaging materials and packages. Reliability performance under accelerated stresses that simulate use conditions are often a critical factor in choice of materials, processing options and design rules. A complete assessment of the cumulative environmental exposure from chip-package assembly, shipment/storage, board system assembly, through end-customer use is required to guarantee product performance and reliability. This paper will detail these end user environments and use failure mode/mechanism specific acceleration models to develop accurate accelerated life testing plans and requirements. These requirements will then be compared to JEDEC standards based requirements and a need for re-calibration of these standards to more appropriate temperatures and stress durations will be highlighted.