Y. Ma, G. Yan, A. Scheuermann, Ling Li, S. Galindo‐Torres, D. Bringemeier
{"title":"Discrete microbubbles flow in transparent porous media","authors":"Y. Ma, G. Yan, A. Scheuermann, Ling Li, S. Galindo‐Torres, D. Bringemeier","doi":"10.1201/B17034-177","DOIUrl":null,"url":null,"abstract":"The coal seam gas and underground coal gasification industry has caused concerns with the risk of potential groundwater contamination. Gases leaked from coal seams are thought to be a source of groundwater pollution. However, the basic principles and controlling parameters for gases seepage from deep ground formations to the surface are not fully understood. Microbubble transport, as a possible mechanism for gases transport in the subsurface, is investigated here through a laboratory-scale experiment. Microbubbles were generated from a bubble diffuser and released into a 2D artificial transparent porous medium. The point source of bubble injection was used to simulate the release of gases from geological faults/fractures. The medium's transparency enabled a clear visualization of the bubble pathways. Images captured by cameras were used to facilitate analyses on the bubble transport behavior affected by advection and dispersion.","PeriodicalId":294644,"journal":{"name":"Unsaturated Soils: Research & Applications","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unsaturated Soils: Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/B17034-177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The coal seam gas and underground coal gasification industry has caused concerns with the risk of potential groundwater contamination. Gases leaked from coal seams are thought to be a source of groundwater pollution. However, the basic principles and controlling parameters for gases seepage from deep ground formations to the surface are not fully understood. Microbubble transport, as a possible mechanism for gases transport in the subsurface, is investigated here through a laboratory-scale experiment. Microbubbles were generated from a bubble diffuser and released into a 2D artificial transparent porous medium. The point source of bubble injection was used to simulate the release of gases from geological faults/fractures. The medium's transparency enabled a clear visualization of the bubble pathways. Images captured by cameras were used to facilitate analyses on the bubble transport behavior affected by advection and dispersion.