The Research on Chinese Coreference Resolution Based on Support Vector Machines

Yihao Zhang, Peng Jin
{"title":"The Research on Chinese Coreference Resolution Based on Support Vector Machines","authors":"Yihao Zhang, Peng Jin","doi":"10.1109/ICGEC.2010.49","DOIUrl":null,"url":null,"abstract":"Coreference is a common linguistic phenomenon in natural language understanding, it plays an important role in simplifying the expression and linking up the context. In this paper, the algorithm of support vector machines is applied to solve the problem of Chinese coreference, we consider fully the important characteristics which related to coreference and integrate them effectively to build model. In the handling of training data, using data scaling techniques balance the range of characteristic values, and use cross validation to optimize the training parameters of the model. The experimental results show that the F-score of positive instances and negative instances reached 76.80% and 90.91% respectively on the classification model in Lancaster Corpus of Mandarin Chinese.","PeriodicalId":373949,"journal":{"name":"2010 Fourth International Conference on Genetic and Evolutionary Computing","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth International Conference on Genetic and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGEC.2010.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Coreference is a common linguistic phenomenon in natural language understanding, it plays an important role in simplifying the expression and linking up the context. In this paper, the algorithm of support vector machines is applied to solve the problem of Chinese coreference, we consider fully the important characteristics which related to coreference and integrate them effectively to build model. In the handling of training data, using data scaling techniques balance the range of characteristic values, and use cross validation to optimize the training parameters of the model. The experimental results show that the F-score of positive instances and negative instances reached 76.80% and 90.91% respectively on the classification model in Lancaster Corpus of Mandarin Chinese.
基于支持向量机的中文互参分辨研究
共指是自然语言理解中常见的语言现象,它在简化表达、连接语境方面起着重要作用。本文将支持向量机算法应用于中文共指问题,充分考虑与共指相关的重要特征,并对其进行有效整合,建立模型。在训练数据的处理上,利用数据缩放技术平衡特征值的范围,并利用交叉验证优化模型的训练参数。实验结果表明,在兰开斯特普通话语料库的分类模型上,积极实例和消极实例的f值分别达到76.80%和90.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信