Automatic detection of epileptic EEG using THFB and auroregressive modeling

S. S. Khatavkar, J. Gawande
{"title":"Automatic detection of epileptic EEG using THFB and auroregressive modeling","authors":"S. S. Khatavkar, J. Gawande","doi":"10.1109/INDICON.2014.7030585","DOIUrl":null,"url":null,"abstract":"In this work, the EEG signal is decomposed into its five subbands viz. delta (0.8-4Hz), theta (4-8Hz), alpha (8-15Hz), beta (15-30Hz), gamma (above 30Hz) using Triplet Half-band Filter Bank (THFB). Then, the autoregressive (AR) model is computed for each subband. Next, power spectral density (PSD) of the AR coefficients of each subbands is estimated for classfication of normal and epileptic EEG. It is observed that classification performed using THFB-AR modeling method gives better classification accuracy than existing method (approximate entropy).","PeriodicalId":409794,"journal":{"name":"2014 Annual IEEE India Conference (INDICON)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2014.7030585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, the EEG signal is decomposed into its five subbands viz. delta (0.8-4Hz), theta (4-8Hz), alpha (8-15Hz), beta (15-30Hz), gamma (above 30Hz) using Triplet Half-band Filter Bank (THFB). Then, the autoregressive (AR) model is computed for each subband. Next, power spectral density (PSD) of the AR coefficients of each subbands is estimated for classfication of normal and epileptic EEG. It is observed that classification performed using THFB-AR modeling method gives better classification accuracy than existing method (approximate entropy).
应用四氢脑电波和光回归模型自动检测癫痫脑电图
在这项工作中,EEG信号被分解为五个子波段,即delta (0.8-4Hz), theta (4-8Hz), alpha (8-15Hz), beta (15-30Hz), gamma (30Hz以上),使用三重半带滤波器组(THFB)。然后,计算每个子带的自回归(AR)模型。其次,估计各子带AR系数的功率谱密度(PSD),用于正常和癫痫脑电的分类。观察到,使用THFB-AR建模方法进行分类比现有方法(近似熵)具有更好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信